摘要
575株沙门菌中耐药菌株占比84.70%(487/575),测试菌株对萘啶酸(NAL)耐药率最高,为58.61%(337/575),发现耐亚胺培南(IPM)和耐替加环素(TGC)沙门菌各1株。多重耐药率达61.39%(353/575),同时耐受抗菌药物种类最高为10类。共存在147种耐药谱,优势耐药谱为SAM-CT-AMP-NAL,占比28.57%(42/147)。不同样品来源的沙门菌耐药率差异有统计学意义,冻生鸡肉沙门菌分离株耐药率最高,为95.51%(85/89)。河北和黑龙江来源的分离株耐药率较高,均为100%。检出6株mcr-1基因阳性沙门菌,检出率为1.04%(6/575),2株来自湖北,另外4株分别来自河北、安徽、辽宁和山东的食品样品,均为多重耐药株,主要携带aac(6')-laa、mcr-1.1、fosA3等耐药基因,质粒复制子类型主要为IncI2、IncP1和IncHI2等。
沙门菌是全球具有重要公共卫生学意义的人兽共患病原菌之一,可对公众构成严重的健康危
质粒介导的黏菌素可转移耐药基因(mcr)能够编码磷酸乙醇胺转移酶,修饰脂质A促使细菌对黏菌素敏感性降低,介导低水平的黏菌素耐药。mcr基因可通过质粒或其他可移动元件的作用下,在同种或不同种属细菌间转移,随着LIU
本研究针对2022年中国大陆食品中沙门菌分离株进行抗菌药物敏感性测定,分析其耐药性特征,同时开展mcr基因PCR筛查,并针对PCR阳性株开展基因组测序和生物信息学分析,为减缓和控制食源性沙门菌耐药性的传播提供基础数据。
本研究所用575株沙门菌,分离自2022年国家食品污染物和有害因素风险监测网采集的食品样品。全部菌株来自我国31个省(自治区、直辖市),所有菌株均已经生化鉴定复核确认为沙门菌后入库保藏。药敏质控菌株大肠埃希菌(ATCC 25922)为本实验室保存。
生物安全柜(型号:AC2‑6S1,新加坡ESCO公司),恒温培养箱(型号:INCUCELL 222,德国MMM公司),台式离心机(型号:1‑14,美国SIGMA公司),PCR仪(C1000Touch)、电泳仪(POWERPA BASIC)和凝胶成像系统(Universal Hood Ⅱ)均购自美国伯乐(Bio‑Rad)公司,DensiCHEK Plus比浊仪、Vitek2 Compact生化鉴定仪均购自法国Biomerieux公司。
脑心浸液琼脂(Brain heart agar,BHA)和脑心浸液肉汤(Brain heart infusion,BHI)购自北京陆桥公司,PCR MasterMix、100 bp DNA Ladder、DNA提取试剂盒均购自天根生化科技(北京)有限公司。抗菌药物药敏板及药敏肉汤均购自复星诊断科技(上海)有限公司,包括以下11类17种抗菌药物:萘啶酸(Nalidixic acid,NAL)、环丙沙星(Ciprofloxacin,CIP)、氨苄西林(Ampicillin,AMP)、氨苄西林/舒巴坦(Ampicillin-sulbactam,SAM)、四环素(Tetracycline,TET)、氯霉素(Chloramphenicol,CHL)、氟苯尼考(Florfenicol,FFC)、复方新诺明(Trimethoprim‑sulfamethoxazole,SXT)、头孢噻肟(Cefotaxime,CTX)、头孢他啶(Ceftazidime,CAZ)、庆大霉素(Gentamicin,GEN)、亚胺培南(Imipenem,IPM)、多黏菌素E(Colistin,CT)、阿奇霉素(Azithromycin,AZI)、替加环素(Tigecycline,TGC)、头孢唑啉(Cefazolin,CFZ)、头孢西丁(Cefoxitin,FOX)。
使用微量肉汤稀释法对分离到的沙门菌进行耐药性实验。待测菌株用一次性无菌接种环,从冻存管划线接种至BHA平板37 ℃过夜培养复苏,挑取单颗菌落再次转接BHA平板37 ℃培养24 h,使用0.85%生理盐水制作0.5麦氏浊度单位菌悬液,取60 μL菌悬液至含有12 mL药敏接种培养液的“V”形加样槽中,充分混匀后,用8通道微量移液器按照100 μL/孔加至药敏板,置于恒温恒湿培养箱内37 ℃孵育18~24 h,大肠埃希菌(ATCC 25922)为质控菌株,肉眼读取抑制受试菌株生长的最小浓度孔(Minimum inhibitory concentration,MIC)。依据2022版美国临床和实验室标准化协会(CLSI,M100-S32,2022)发布的药物敏感性及耐药标
水煮法提取受试菌株基因组DNA,采用PCR方法检测mcr基因,扩增方法和条件参照文献[
目的基因 | 引物名称 | 引物序列(5’-3’) | 片段大小(bp) |
---|---|---|---|
mcr-1 | mcr-1_F | AGTCCGTTTGTTCTTGTGGC | 320 |
mcr-1_R | AGATCCTTGGTCTCGGCTTG | ||
mcr-2 | mcr-2_F | TCTAGCCCGACAAGCATACC | 715 |
mcr-2_R | TCTAGCCCGACAAGCATACC | ||
mcr-3 | mcr-3_F | AAATAAAAATTGTTCCGCTTATG | 929 |
mcr-3_R | AATGGAGATCCCCGTTTTT | ||
mcr-4 | mcr-4_F | TCACTTTCATCACTGCGTTG | 1 116 |
mcr-4_R | TTGGTCCATGACTACCAATG | ||
mcr-5 | mcr-5_F | ATGCGGTTGTCTGCATTTATC | 1 644 |
mcr-5_R | TCATTGTGGTTGTCCTTTTCTG | ||
mcr-6 | mcr-6_F | AGCTATGTCAATCCCGTGAT' | 252 |
mcr-6_R | ATTGGCTAGGTTGTCAATC | ||
mcr-7 | mcr-7_F | GCCCTTCTTTTCGTTGTT | 551 |
mcr-7_R | GGTTGGTCTCTTTCTCGT | ||
mcr-8 | mcr-8_F | TCAACAATTCTACAAAGCGTG | 856 |
mcr-8_R | AATGCTGCGCGAATGAAG | ||
mcr-9 | mcr-9_F | TTCCCTTTGTTCTGGTTG | 1 011 |
mcr-9_R | GCAGGTAATAAGTCGGTC |
针对PCR筛选出的mcr基因阳性沙门菌株,BHA平板挑取单菌落传二代,用商品化试剂盒法提基因组DNA,送至上海美吉生物医药科技有限公司进行全基因组测序(Illumina NovaSeq PE150),并通过生物信息学分析对PCR扩增阳性结果进行mcr基因确证。使用SeqSero2软件(v1.2.1 2021.05.23)进行沙门菌血清型预测,使用Center for Genomic Epidemiology(CGE)网站基因组开放预测平台,按照默认质量和阈值参数,通过ResFinder 4.4.3、PlasmidFinder 2.1和MLST 2.0预测耐药基因、质粒复制子类型和ST型(https://cge.food.dtu.dk/services/)。
575株沙门菌中有487株(84.70%)为耐药菌株,对受试的17种抗菌药物呈现不同程度的耐药性。其中,对NAL耐药率最高,为58.61%(337/575),其次为AMP、TET、SAM、FFC分别为57.57%(331/575)、49.22%(283/575)、47.30%(272/575)和40.52%(233/575);CHL、CFZ、CT、SXT、CTX和GEN的耐药率在20%~40%之间,分别为40.00%(230/575)、32.70%(188/575)、30.43%(175/575)、27.65%(159/575)、24.70%(142/575)和23.30%(134/575);对AZI、CIP、CAZ的耐药率在10%~20%之间;对FOX耐药率为1.74%(10/575),对IPM和TGC耐药率低于1%,均为0.17%(1/575);对CFZ、FFC、FOX、SAM、CIP中介率超过4%,分别为18.61%(107/575)、15.48%(89/575)、10.96%(63/575)、9.91%(57/575)和4.87%(28/575)。检出耐IPM和耐TGC沙门菌各1株,分别来自河北的鸡肉和四川的食品样品。详见
抗菌药物类别 | 抗菌药物简称 | 耐药菌株数/% | 中介菌株数/% | 敏感菌株数/% |
---|---|---|---|---|
内酰胺/内酰胺酶抑制剂类 | SAM | 272(47.30) | 57(9.91) | 246(42.78) |
碳青霉烯类 | IPM | 1(0.17) | 0(0) | 574(99.83) |
氨基糖苷类 | GEN | 134(23.30) | 9(1.57) | 432(75.13) |
大环内酯类 | AZI | 67(11.65) | — | 508(88.35) |
四环素类 | TET | 283(49.22) | 1(0.17) | 291(50.61) |
TGC | 1(0.17) | — | 574(99.83) | |
苯丙醇类 | CHL | 230(40.00) | 8(1.39) | 337(58.61) |
FFC | 233(40.52) | 89(15.48) | 253(44.00) | |
多黏菌素类 | CT | 175(30.43) | 400(69.57) | — |
青霉素类 | AMP | 331(57.57) | 0(0) | 244(42.43) |
喹诺酮类 | NAL | 337(58.61) | — | 238(41.39) |
CIP | 107(18.61) | 28(4.87) | 440(76.52) | |
头孢类 | CAZ | 96(16.70) | 16(2.78) | 463(80.52) |
FOX | 10(1.74) | 63(10.96) | 502(87.30) | |
CTX | 142(24.70) | 0(0) | 433(75.30) | |
CFZ | 188(32.70) | 107(18.61) | 280(48.70) | |
磺胺类 | SXT | 159(27.65) | — | 416(72.35) |
注: “—”表示CLSI或EUCAST标准中没有相关判定标准
多重耐药(MDR)菌株共有353株,占所有菌株的61.39%(353/575)。耐受2类抗菌药物的菌株数量最多(14.43%,83/575),其次为同时耐受5类抗菌药物的菌株(13.04%,75/575)和同时耐受4类抗菌药物的菌株(12.00%,69/575),受试沙门菌同时耐受抗菌药物种类最高为10类。487株耐药沙门菌共有147种耐药谱,多重耐药(同时耐受3类及3类以上药物)沙门菌中优势耐药谱为SAM-CT-AMP-NAL(42株)。检出4株同时耐受10类抗菌药物的沙门菌,其中有2株可同时耐受除碳青霉烯类以外的10类14种抗菌药物,1株可同时耐受除碳青霉烯类以外的10类15种抗菌药物,1株可同时耐受除多黏菌素类以外的10类15种抗菌药物。受试菌株耐受抗菌药物种类情况见

图1 沙门菌耐受药物种类及其占比(n=575)
Figure 1 Types and proportion of Salmonella resistant to 10 classes of 17 antimicrobials (n=575)
注: R0~R10表示沙门菌分离株同时耐受所测试10类抗菌药物的种类数
不同地区沙门菌耐药结果显示,河北、黑龙江和河南分离株耐药率在90%以上,分别为100.00%(23/23)、100.00%(22/22)和93.18%(41/44),广东、山东、四川、陕西、内蒙古、云南、湖南和江苏等地分离株耐药率在80%~90%之间,分别为:88.24%(30/34)、84.62%(22/26)、84.44%(38/45)、84.38%(27/32)、84.00%(21/25)、84.00%(21/25)、80.33%(49/61)和80.00%(16/20),不同地区沙门菌分离株耐药率间差异具有统计学意义(P=0.023)。河北分离株多重耐药率高达82.61%(19/23),其次为河南77.27%(34/44)、陕西75.00%(24/32)、内蒙古72.00%(18/25)、山东69.23%(18/26)、四川68.89%(31/45)和广东64.71%(22/34),其他省(自治区、直辖市)多重耐药率介于42%~57%之间。湖北、陕西、山东和江西的七重及以上耐药菌株比例超过30%。全国各地区沙门菌分离株的多重耐药率情况详见

图2 不同地区来源沙门菌多重耐药状况
Figure 2 Multi-drug resistance of Salmonella isolates from different provinces
注: “其他”地区包括山西、安徽、湖北、江西、北京、重庆、吉林、甘肃、辽宁、福建、海南、贵州、新疆生产建设兵团、宁夏、上海、天津、新疆、青海等省(自治区、直辖市),实验菌株数目少于20株,不参与单独省份的耐药率评价,耐药率为84.81%(134/158)
将所有沙门菌分离株的不同食品样品来源分为7类,耐药率结果显示,冻生鸡肉、冷却生鸡肉和调理鸡肉分离出来的沙门菌耐药率在90%以上,分别为95.51%(85/89)、92.31%(36/39)和92%(46/50),其次为其他生禽肉和鲜鸡肉的沙门菌分离株耐药率在80%~90%之间,分别为85.29%(58/68)和83.98%(152/181),不同样品来源的沙门菌耐药率不同,差异具有统计学意义(P<0.001)。多重耐药率在42%~78%之间,其他食品样品来源(即非禽类食品)沙门菌分离株多重耐药率最低为42.11%(24/57),调理鸡肉样品来源沙门菌分离株多重耐药率最高为78.00%(39/50)。详见

图3 不同样品来源沙门菌多重耐药状况
Figure 3 Multi-drug resistance of Salmonella isolates from different sample sources
注: “其他食品”种类包括调味品、蔬菜及其制品、食用菌
普通PCR检测结果表明,575株沙门菌分离株中有6株mcr-1基因PCR阳性,未检出mcr-2~mcr-9基因,mcr-1基因PCR阳性率为1.04%,其中2株为来自湖北的食品样品(具体未知),4株为来自河北、安徽和山东的冻生鸡肉样品以及辽宁的调理鸡肉样品。6株mcr-1阳性沙门菌均具有七重及以上耐药谱。
WGS数据显示,6株mcr-1基因PCR阳性菌株中,3株为印第安纳(Indiana)沙门菌,2株为胥伐成格隆(Schwarzengrund)沙门菌,1株为肯塔基(Kentucky)沙门菌;3株印第安纳沙门菌均为ST17型,2株胥伐成格隆沙门菌为ST241型,肯塔基沙门菌为ST198型。6株菌株的mcr-1基因均为mcr-1.1型别。耐药基因分析表明6株菌株携带耐药基因数目在11~25种之间,主要携带mcr-1.1、aac(6')-laa、fosA3、tet(A) 等耐药基因,质粒复制子类型主要为IncI2、IncP1和IncHI2等,不同菌株携带的耐药基因和质粒复制子类型均有差别。详见表4。
菌株编号 | 血清型 | ST型 | 多重耐药数 | 耐药谱 | 耐药基因 | 质粒复制子类型 |
---|---|---|---|---|---|---|
2022S60 | Indiana | 17 | 10 | SAM-GEN-AZI-TET-CHL-FFC-CT-AMP-NAL-CAZ-CIP-CTX-CFZ-SXT | aac(3)-Iv、aac(6')-Ib-cr、aac(6')-laa、aadA22、aadA5、aph(3')-Ia、aph(3')-Ib、aph(4)-Ia、aph(6)-Id、armA、ARR-3、blaCTX-M-55、blaOXA-1、bleO、catB3、dfrA17、fosA3、lnu(F)、mcr-1.1、mph(A)、mph(E)、msr(E)、oqxA、oqxB、sul2、tet(A) | IncP1 |
2022S75 | Indiana | 17 | 10 | SAM-GEN-AZI-TET-CHL-FFC-CT-AMP-NAL-CAZ-CIP-CTX-CFZ-SXT | aac(3)-Iv、aac(6')-Ib-cr、aac(6')-laa、aadA5、aph(3')-IIa、aph(4)-Ia、armA、ARR-3、blaCTX-M-65、blaOXA-1、catB3、dfrA17、floR、fosA3、mcr-1.1、mph(A)、sul1、sul2、tet(A) | Col156、IncHI2、IncHI2A、IncX1 |
2022S1970 | Indiana | 17 | 10 | SAM-GEN-AZI-TET-CHL-FFC-CT-AMP-NAL-CAZ-CIP-CTX-CFZ-SXT | aac(6')-laa、aac(3)-Iv、aac(6')-Ib-cr、aph(4)-Ia、ARR-3、blaCTX-M-123、blaOXA-1、catB3、dfrA12、floR、fosA3、mcr-1.1、mph(A)、sul1、sul2、tet(A) | Col440Ⅱ、IncI(Gamma)、IncP1 |
2022S175 | Schwarzengrund | 241 | 7 | SAM-TET-CT-AMP-NAL-CIP-CTX-CFZ-SXT | aac(6')-laa、aac(6')-Ib-cr、aadA2、aph(3')-Ia、ARR-3、blaCTX-M-65、blaOXA-1、catB3、dfrA12、fosA3、mcr-1.1、oqxA、oqxB、qnrS1、sul1、sul3、tet(A) | IncHI2、IncHI2A、IncI2(Delta)、IncR |
2022S1610 | Schwarzengrund | 241 | 7 | SAM-TET-CT-AMP-NAL-CTX-CFZ-SXT | aac(6')-laa、aadA2、blaCTX-M-14、bleO、dfrA12、fosA3、mcr-1.1、qnrS1、sul1、sul3、tet(A) | IncHI2、IncHI2A |
2022S2230 | Kentucky | 198 | 7 | SAM-GEN-CHL-FFC-CT-AMP-NAL-CAZ-CIP-CTX-CFZ | aac(6')-laa、aac(3)-IId、aac(3)-Iv、aph(3')-Ia、aph(4)-Ia、blaCTX-M-55、blaTEM-1B、blaTEM-141、blaTEM-206、blaTEM-209、blaTEM-214、floR、fosA3、mcr-1.1、rmtB | IncI2(Delta) |
本研究结果显示,2022年我国食品中分离的沙门菌整体耐药率(84.70%)和多重耐药率(61.39%)均较高,其中耐药率最高的四种药物分别为NAL、AMP、TET和SAM,与2015、2016和2020年我国食品中沙门菌耐药情
本研究结果显示,2022年我国食源性沙门菌耐药性存在一定程度的地区差异性,部分地区多重耐药情况较严重,如河北、河南和陕西,与以往研究结果一
多黏菌素在2018年已经被禁止用于动物生长促进剂
综上所述,2022年中国大陆食源性沙门菌耐药水平较高,多重耐药较严重,耐药谱复杂多样化,检出对几种临床上治疗多重耐药沙门菌感染的重要药物的耐药株,且部分菌株携带mcr-1基因,应引起相关部门高度重视。同时,需要结合重要耐药基因特征、血清型分析,对食源性沙门菌进行持续性耐药监测工作,对检出的携带mcr等介导重要可移动耐药基因机制的菌株开展核苷酸序列比对和溯源分析,为政府风险决策、更高效地对沙门菌分离株进行溯源分析,更合理地为临床用药提供科学依据,最终切实保障我国食品安全。
参考文献
FUNG F, WANG H S, MENON S. Food safety in the 21st century[J]. Biomedical Journal, 2018, 41(2): 88-95. [百度学术]
WHO. Salmonella (non-typhoidal)[EB/OL]. (2018-02-20)[2024-01-14]. https://www.who.int/zh/news-room/fact-sheets/detail/salmonella-(non-typhoidal). [百度学术]
HAVELAAR AH, KIRK MD, TORGERSON PR, et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010[J]. Plos Medicine, 2015, 12(12): e1001923. [百度学术]
European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021[J]. EFSA Journal, 2023, 21(3): e07867. [百度学术]
DELAHOY M J, SHAH H J, WELLER D L, et al. Preliminary Incidence and Trends of Infections Caused by Pathogens Transmitted Commonly Through Food - Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2022[J]. Morbidity and Mortality Weekly Report, 2023, 72(26): 701-706. [百度学术]
WENG R, GU Y, ZHANG W, et al. Whole-Genome Sequencing Provides Insight Into Antimicrobial Resistance and Molecular Characteristics of Salmonella From Livestock Meat and Diarrhea Patient in Hanzhong, China[J]. Frontiers in Microbiology, 2022, 13: 899024. [百度学术]
李月华, 赵格, 赵建梅, 等. 欧盟、美国及国内畜禽屠宰环节沙门氏菌监控现状[J]. 中国动物检疫, 2021, 38(6): 69-75. [百度学术]
LI Y H, ZHAO G, ZHAO J M, et al. Discussion on the Monitoring Status of Salmonella during Livestock and Poultry Slaughtering in EU, the United State and China[J]. Chinese Journal of Animal Health Inspection, 2021, 38(6): 69-75. [百度学术]
刘云哲, 赵格, 赵建梅, 等. 生猪屠宰过程沙门菌污染状况及其耐药性传播风险[J]. 中国兽医杂志, 2023, 59(11): 59-68. [百度学术]
LIU Y Z, ZHAO G, ZHAO J M, et al. Salmonella Contamination and Drug Resistance Transmission Risk in Pig Slaughtering Process[J]. Chinese Journal of Veterinary Medicine, 2023, 59(11): 59-68. [百度学术]
LIU Y Y, WANG Y, WALSH TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study[J]. Lancet Infectious Diseases, 2016, 16(2): 161-8. [百度学术]
PORTES AB, RODRIGUES G, LEITÃO MP, et al. Global distribution of plasmid-mediated colistin resistance mcr gene in Salmonella: A systematic review[J]. Journal of Applied Microbiology, 2022, 132(2): 872-889. [百度学术]
HU Y, FANNING S, GAN X, et al. Salmonella harbouring the mcr-1 gene isolated from food in China between 2012 and 2016[J]. Journal of Antimicrobial Chemotherapy, 2019, 74(3): 826-828. [百度学术]
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 32nd edition. CLSI supplement M100-S32. Wayne: CLSI; 2022. [百度学术]
CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals. 5th ed. CLSI standard VET01. Wayne, PA: Clinical and Laboratory Standards Institute, 2018. [百度学术]
The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. [EB/OL].(2018-08-01)[2024-03-24]. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_T ables.pdf. Accessed on 2023-01-02. [百度学术]
REBELO AR, BORTOLAIA V, KJELDGAARD JS, et al. Multiplex PCR for detection of plasmid-mediated colistin resistance determinants, mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5 for surveillance purposes[J]. Eurosurveillance, 2018, 23(6): 17-00672. [百度学术]
BOROWIAK M, BAUMANN B, FISCHER J, et al. Development of a Novel mcr-6 to mcr-9 multiplex PCR and assessment of mcr-1 to mcr-9 Occurrence in colistin-resistant Salmonella enterica isolates from environment, feed, animals and food (2011—2018) in Germany[J]. Frontiers in Microbiology, 2020, 11: 80. [百度学术]
胡豫杰, 王伟, 闫韶飞, 等. 2015年分离自中国大陆食品的1 070株沙门菌耐药性分析[J]. 中国食品卫生杂志, 2017, 17(2): 100-103. [百度学术]
HU Y J, WANG W, YAN S F, et al. Resistance analysis of 1 070 Salmonella strains isolated from food sample in mainland China, 2015[J]. Chinese Journal of Food Hygiene, 2017, 17(2): 100-103. [百度学术]
胡豫杰, 刘畅, 王美美, 等. 2016年中国26个省市食源性沙门菌耐药性特征分析[J]. 中国食品卫生杂志, 2018, 30(5): 456-461. [百度学术]
HU Y J, LIU C, WANG M M, et al. Resistance characteristic analysis for foodborne Salmonella isolates from China, 2016[J]. Chinese Journal of Food Hygiene, 2018, 30(5): 456-461. [百度学术]
HU Y J, ZHANG C X , ZHANG J, et al. Antimicrobial resistance in non-typhoidal salmonella from retail foods collected in 2020 in China[J]. Zoonoses, 2023, 3(1). [百度学术]
FREY E, STAPLETON GS, NICHOLS MC, et al. Antimicrobial resistance in multistate outbreaks of nontyphoidal Salmonella infections linked to animal contact-United States, 2015—2018[J]. Journal of Clinical Microbiology, 2024, 62(1): e0098123. [百度学术]
吴慧敏, 夏盼盼, 吴海潮, 等. 新疆某规模化猪场“人-动物-环境”来源沙门菌耐药性分析[J]. 中国农业大学学报, 2023, 28(7): 142-150. [百度学术]
WU H M, XIA P P, WU H C, et al. Antimicrobial resistance analysis of Salmonella isolates from “Human-animal-environment” origin from a large farm in Xinjiang[J]. Journal of China Agriculture University, 2023, 28(7): 142-150. [百度学术]
WANG Z, ZHANG J, LIU S, et al. Prevalence, antimicrobial resistance, and genotype diversity of Salmonella isolates recovered from retail meat in Hebei Province, China[J]. International Journal of Food Microbiology, 2022, 364: 109515. [百度学术]
蒋增海, 姚璐璐, 张超君, 等. 河南省猪产业链中耐头孢菌素沙门菌对β-内酰胺类和喹诺酮类药物的耐药机制分析[J].中国兽医学报, 2023, 43(11): 2274-2280. [百度学术]
JIANG Z H, YAO L L, ZHANG C J, et al. Analysis of mechanisms resistance to β-lactams and quinolones for cephalosporin-resistant Salmonella isolates from pig-borne food chain of Henan Province[J]. Chinese Journal of Veterinary Science, 2023, 43(11): 2274-2280. [百度学术]
SHENG H, SUO J, DAI J, et al. Prevalence, antibiotic susceptibility and genomic analysis of Salmonella from retail meats in Shaanxi, China[J]. International Journal of Food Microbiology, 2023, 403: 110305. [百度学术]
沈平华, 陈慧芬. 新型四环素灭活酶tet(X)致替加环素耐药的机制研究进展[J]. 诊断学理论与实践, 2023, 22(1): 75-79. [百度学术]
SHEN P H, CHEN H F. Advances in mechanism study on novel tetracycline ⁃inactivating enzymes tet(X) causing emerging tigecycline resistance[J]. Journal of Diagnostics Concepts & Practice, 2023, 22(1): 75-79. [百度学术]
ANYANWU MU, NWOBI OC, OKPALA COR, et al. Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention[J]. Frontiers in Microbiology, 2022, 13: 808744. [百度学术]
WANG W, PENG Z X, BALOCH Z, et al. Genomic characterization of an extensively-drug resistance Salmonella enterica serotype Indiana strain harboring blaNDM-1 gene isolated from a chicken carcass in China. Microbiological Research, 2017, 204: 48-54. [百度学术]
WALSH TR, WU Y N. China bans colistin as a feed additive for animals[J]. Lancet Infectious Diseases, 2016, 16(10): 1102-1103. [百度学术]
朱琪琪, 路宁宁, 王承业, 等. 黏菌素耐药基因mcr-1的研究进展[J]. 中国人兽共患病学报, 2023, 39(12): 1211-1217. [百度学术]
ZHU Q Q, LU N N, WANG C Y, et al. Research progress in the colistin resistance gene mcr-1[J]. Chinese Journal of Zoonoses, 2023, 39(12): 1211-1217. [百度学术]
EL-SAYED AHMED MAE, ZHONG L L, SHEN C, et al. Colistin and its role in the Era of antibiotic resistance: an extended review (2000—2019)[J]. Emerging Microbes & Infections, 2020, 9(1): 868-885. [百度学术]
LYU N, FENG Y, PAN Y, et al. Genomic Characterization of Salmonella enterica Isolates From Retail Meat in Beijing, China[J]. Frontiers in Microbiology, 2021, 12: 636332. [百度学术]
HU Y, NGUYEN SV, LIU C, et al. Complete Genome and Plasmid Sequences of Seven Isolates of Salmonella enterica subsp. enterica Harboring the mcr-1 Gene Obtained from Food in China[J]. Microbiology Resource Announcements, 2019, 8(31): e00114-19. [百度学术]
DU P, LIU X, LIU Y, et al. Dynamics of Antimicrobial Resistance and Genomic Epidemiology of Multidrug-Resistant Salmonella enterica Serovar Indiana ST17 from 2006 to 2017 in China[J]. Msystems, 2022, 7(4): e0025322. [百度学术]
王鲁彦, 陈家良, 陈丹妮, 等. 2007—2017年我国部分地区人源及动物源印第安纳沙门菌耐药特征分析[J]. 中国人兽共患病学报, 2023, 39(4): 309-317. [百度学术]
WANG L Y, CHEN J L, CHEN D N, et al. Characterization of antimicrobial resistance in Salmonella Indiana isolates from human and animal sources in China, 2007—2017[J]. Chinese Journal of Zoonoses, 2023, 39(4): 309-317. [百度学术]
SUN R Y, GUO W Y, ZHANG J X, et al. Phylogenomic analysis of Salmonella Indiana ST17, an emerging MDR clonal group in China[J]. Journal of Antimicrobial Chemotherapy, 2022, 77(11): 2937-2945. [百度学术]
GARCÍA P, HOPKINS KL, GARCÍA V, et al. Diversity of plasmids encoding virulence and resistance functions in Salmonella enterica subsp. enterica serovar Typhimurium monophasic variant 4, [5], 12: i:- strains circulating in Europe[J]. PLoS One, 2014, 9(2): e89635. [百度学术]
CARROLL LM, WIEDMANN M, DEN BAKKER H, et al. Whole-Genome Sequencing of Drug-Resistant Salmonella enterica Isolates from Dairy Cattle and Humans in New York and Washington States Reveals Source and Geographic Associations[J]. Applied And Environmental Microbiology, 2017, 83(12): e00140-17. [百度学术]
MCMILLAN EA, JACKSON CR, FRYE JG. Transferable Plasmids of Salmonella enterica Associated With Antibiotic Resistance Genes[J]. Frontiers in Microbiology, 2020, 11: 562181. [百度学术]
CHEN W, FANG T, ZHOU X, et al. IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates[J]. Frontiers in Microbiology, 2016, 7: 1566. [百度学术]