摘要
克罗诺杆菌(Cronobacter spp.)是一类环境适应能力强、分布广泛的食源性条件致病菌,可通过污染婴幼儿配方奶粉等食品导致新生儿感染,并引发坏死性结肠炎、败血症以及脑膜炎等疾病,严重威胁着新生儿和早产儿生命健康。近年来,高通量测序技术和细菌基因组学领域的迅猛发展,极大促进了克罗诺杆菌基因组学分析、分子进化和变异机制、毒力基因、鉴定基因和耐药基因挖掘等方面的研究,这对防治克罗诺杆菌感染具有重要的科学意义。本文旨在对克罗诺杆菌基因组学的最新研究现状和发展趋势予以综述,为应用于预防和治疗克罗诺杆菌感染性疾病以及鉴定克罗诺杆菌新方法的建立提供重要的理论依据。
克罗诺杆菌(Cronobacter)为肠杆菌科的革兰氏阴性菌,是一类重要的食源性条件致病菌,在自然界中分布范围广,环境适应能力强,可从土壤、植物叶面、水果、谷物、奶粉等多种样品中分离得
研究显示,克罗诺杆菌感染病例在全球范围内时有发生,如中国、日本、巴西、美国都曾报道过新生儿或早产儿感染克罗诺杆菌甚至导致死亡的病
2007年,EVA KUCEROVA
随后,得益于全基因组测序技术的快速发展,公共数据库克罗诺杆菌基因组数量在急剧增加,NCBI数据库共收录2 348株克罗诺杆菌基因组数据(截至2024年3月31日)。如

图1 NCBI数据库克罗诺杆菌物种个数统计
Figure 1 Number of species of Cronobacter in NCBI database

图2 2007—2023年NCBI数据库克罗诺杆菌基因组数据统计
Figure 2 Genomes of Cronobacter in NCBI Database from 2007 to 2023
对NCBI数据库中所有的克罗诺杆菌基因组下载并进行筛选,从中筛选出1 843个克罗诺杆菌的高质量基因组并使用CheckM2分析基因组的完整度和污染度(筛选条件:碱基数量≥4 000 000、contigs数量≤100、N50≥500 000、L50≤20、完整度≥85%、污染度≤10%)。克罗诺杆菌属7个物种和属内未归类基因组如
物种 | 组装水平 | 完整度/% | 污染度/% | 基因组大小(Mbp±SD) | 基因组平均GC含量 | 平均 基因数 | 基因平均长度 | tRNA 平均数量 | rRNA 平均数量 |
---|---|---|---|---|---|---|---|---|---|
C. sakazakii | complete | 100 | 0 | 4.54 ± 0.15 | 56.79% | 4 188 | 1 084 | 83 | 7 |
draft | 99.98 | 1.06 | 4.55 ± 0.13 | 56.83% | 4 180 | 1 089 | 72 | 7 | |
C. malonaticus | complete | 100 | 0 | 4.52 ± 0.09 | 56.91% | 4 153 | 1 090 | 83 | 7 |
draft | 99.94 | 0.74 | 4.49 ± 0.13 | 56.91% | 4 119 | 1 091 | 72 | 7 | |
C. universalis | complete | 100 | 0 | 4.44 | 57.83% | 4 044 | 1 097 | 84 | 7 |
draft | 99.97 | 0.80 | 4.40 ± 0.04 | 57.93% | 3 990 | 1 103 | 73 | 7 | |
C. turicensis | complete | 100 | 0 | 4.60 | 57.25% | 4 195 | 1 096 | 85 | 8 |
draft | 99.99 | 0.61 | 4.59 ± 0.09 | 57.35% | 4 172 | 1 100 | 73 | 7 | |
C. dubliniensis | complete | 100 | 0 | 4.71 ± 0.05 | 57.43% | 4 287 | 1 099 | 84 | 7 |
draft | 99.99 | 0.50 | 4.57 ± 0.12 | 57.75% | 4 157 | 1 099 | 73 | 7 | |
C. muytjensii | complete | 100 | 0 | 4.66 ± 0.14 | 57.54% | 4 046 | 1 103 | 86 | 7 |
draft | 99.29 | 0.22 | 4.44 ± 0.11 | 57.54% | 4 028 | 1 103 | 73 | 7 | |
C. condiment | complete | 100 | 0 | 4.50 | 55.78% | 4 109 | 1 095 | 82 | 7 |
draft | 100 | 0.02 | 4.59 | 55.71% | 4 241 | 1 082 | 75 | 7 | |
unidentified species | draft | 100 | 0.06 | 4.63 ± 0.16 | 57.02% | 4 252 | 1 089 | 78 | 7 |

图3 克罗诺杆菌属MLST分型统计
Figure 3 Multiple-locus sequence typing of Cronobacter spp
泛基因组(pan-genome)最早由TETTELIN
克罗诺杆菌被国际食品微生物标准委员会(International Commission of Microbiological Specializations on Food,ICMSF)列为对部分人群存在严重危害的致病菌,并于2004年由联合国粮食和农业组织(Food and Agriculture Organization of the United Nations,FAO)和联合国世界卫生组织(World Health Organization,WHO)划分为A类致病
外膜蛋白A(OmpA)是一种独特的外膜蛋白,大量存在于革兰氏阴性菌的外膜中,在不同细菌中具有保守的氨基酸序列。克罗诺杆菌属的外膜蛋白OmpA有利于该菌侵入脑微血管内皮细胞并引起新生儿脑膜
脂多糖(Lipopolysaccharide,LPS)是克罗诺杆菌重要的毒力因子,对于侵入肠上皮细胞至关重要。O抗原锚定在革兰氏阴性菌的脂多糖外膜上,是细菌与环境的免疫屏
MLST分型是一种基于核酸序列测定的细菌分子分型方法,通过PCR扩增多个管家基因(通常为7个)的内部片段,然后测定这些片段的序列以分析不同菌株的变异程度,从而进行对不同菌株的分型。克罗诺杆菌的MLST分型最早由FORSYTHE团
核心基因组多位点序列分型(Core genome multiple-locus sequence typing,cgMLST)核心基因组多位点序列分型是基于全基因组的核心靶基因进行序列分型,在现有的MLST数据基础上,以大量菌株中存在的核心基因组作为序列分型标记。2014年,FORSYTHE
细菌的毒力基因与其造成疾病的严重程度息息相关。因此,对细菌毒力基因的挖掘就显得至关重要。传统挖掘毒力基因的方法费时费力,并且重复性较差,但是通过全基因组测序和比较基因组学分析就可以迅速预测细菌的毒力基因,并且与相关表型相联系,从而推测潜在的致病性,这对于分析和筛选细菌毒力基因提供了有力的帮助。
2019年,CUI
当今卫生健康领域中,相较于全基因组测序,以特异性的鉴定基因为基础的PCR检测技术和芯片检测技术对已知的病原菌进行检测因成本低廉、检测迅速等优点而被广泛应用。2024年2月8日,PCR扩增管家基因进行克罗诺杆菌种的鉴定的方法已经列为国家标准方法,这对于鉴定基因的筛选就显得至关重要。随着高通量测序技术的不断发展,基于全基因组数据,通过大规模的比较基因组学分析筛选病原菌的特异性鉴定基因已然成为一种重要的筛选方法。
2019年,CHEN
克罗诺杆菌是一类重要的食源性条件致病菌,在进化过程中适应不同的环境显示出丰富的遗传多样性。自克罗诺杆菌基因组时代开启以来,克罗诺杆菌基因组特征、核心基因组和泛基因组的了解也更加深入,这对于研究该菌种内遗传多样性以及探究不同个体间的进化关系具有重要的应用价值。与传统方法相比,基于全基因组测序的基因组学研究方法对克罗诺杆菌进行分型能够提高分型的分辨率和准确性,有助于该菌的定性和溯源,这对于预防和控制病原菌的感染具有重要意义。利用比较基因组学分析筛选重要的毒力基因以及鉴定基因,为探究克罗诺杆菌的致病机制等方面提供见解,为其物种的鉴定提供更多选择。虽然已经对克罗诺杆菌的基因组进行了广泛的研究,但克罗诺杆菌的研究仍面临着许多挑战,包括揭示其与宿主相互作用的机制、深入了解其功能和代谢途径、研究群落的结构和动态变化、理解其抗生素耐药性以及克服基因组组装和注释的挑战等。克罗诺杆菌基因组的应用也将促进微生物治疗、精准医学和抗菌药物研发的进展,为人类健康带来更大的益处。
参考文献
FORSYTHE S J. Updates on the Cronobacter genus[J]. Annual Review of Food Science and Technology, 2018, 9: 23-44. [百度学术]
YONG W, GUO B, SHI X, et al. An investigation of an acute gastroenteritis outbreak: Cronobacter sakazakii, a potential cause of food-borne illness[J]. Frontiers in Microbiology, 2018,9: 2549. [百度学术]
ALY M A, DOMIG K J, KNEIFEL W, et al. Whole genome sequencing-based comparison of food Isolates of Cronobacter sakazakii [J]. Frontiers in Microbiology, 2019, 10: 1464. [百度学术]
KILLER J, SKŘIVANOVÁ E, HOCHE I, et al. Multilocus sequence typing of Cronobacter strains isolated from retail foods and environmental samples[J]. Foodborne Pathogens and Disease, 2015, 12(6): 514-521. [百度学术]
SIQUEIRA S R, DA S N, AMSTALDEN J V, et al. Screening for Cronobacter species in powdered and reconstituted infant formulas and from equipment used in formula preparation in maternity hospitals[J]. Annals Of Nutrition And Metabolism, 2013, 63(1-2): 62-68. [百度学术]
SINGH N, GOEL G, RAGHAV M. Prevalence and characterization of Cronobacter spp. from various foods, medicinal plants, and environmental samples[J]. Current Microbiology, 2015, 71(1): 31-38. [百度学术]
FRIEDEMANN M. Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections[J]. European Journal Of Clinical Microbiology & Infectious Diseases, 2009, 28(11): 1297-1304. [百度学术]
CORTI G, PANUNZI I, LOSCO M, et al. Postsurgical osteomyelitis caused by Enterobacter sakazakii in a healthy young man[J].Journal of chemotherapy, 2007, 19(1): 94-96. [百度学术]
LAI K K. Enterobacter sakazakii infections among neonates, infants, children, and adults. Case reports and a review of the literature[J]. Medicine (Baltimore), 2001, 80(2): 113-122. [百度学术]
URMENYI A M, FRANKLIN A W. Neonatal death from pigmented coliform infection[J]. Lancet, 1961, 1(7172): 313-315. [百度学术]
HASTON J C, MIKO S, COPE J R, et al. Cronobacter sakazakii infections in two infants linked to powdered infant formula and breast pump equipment - United States, 2021 and 2022[J]. Morbidity and Mortality Weekly Report, 2023, 72(9): 223-226. [百度学术]
TERAMOTO S, TANABE Y, OKANO E, et al. A first fatal neonatal case of Enterobacter sakazakii infection in Japan[J]. Pediatrics International , 2010, 52(2): 312-313. [百度学术]
CHAVES C, BRANDÃO M, LACERDA M, et al. Fatal Cronobacter sakazakii sequence type 494 meningitis in a newborn, Brazil[J]. Emerging Infectious Diseases, 2018, 24(10): 1948-1950. [百度学术]
KUCEROVA E, CLIFTON S W, XIA X Q, et al. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species[J]. PLoS One, 2010, 5(3): e9556. [百度学术]
TETTELIN H, MASIGNANI V, CIESLEWICZ M J, et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”[J]. Proceedings of the National Academy of Sciences U S A, 2005,102(39): 13950-13955. [百度学术]
GRIM C J, KOTEWICZ M L, POWER K A, et al. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation[J]. BMC Genomics, 2013, 14: 366. [百度学术]
LEE I, ANDAM C P. Pan-genome diversification and recombination in Cronobacter sakazakii, an opportunistic pathogen in neonates, and insights to its xerotolerant lifestyle[J]. BMC Microbiology, 2019, 19(1): 306. [百度学术]
FINKELSTEIN S, NEGRETE F, JANG H, et al. Prevalence, distribution, and phylogeny of type two toxin-antitoxin genes possessed by Cronobacter Species where C. sakazakii homologs follow sequence type lineages[J]. Microorganisms, 2019,7(11): 554. [百度学术]
HUNTER C J, BEAN J F. Cronobacter: an emerging opportunistic pathogen associated with neonatal meningitis, sepsis and necrotizing enterocolitis[J]. Journal of Perinatology, 2013, 33(8): 581-585. [百度学术]
NAZAROWEC W M,FARBER J M. Enterobacter sakazakii: a review[J]. Int J Food Microbiol, 1997, 34(2): 103-113. [百度学术]
HARIRI S, JOSEPH S,FORSYTHE S JHariri S, Joseph S, Forsythe S J. Cronobacter sakazakii ST4 strains and neonatal meningitis, United States[J]. Emerging Infectious Diseases, 2013, 19(1): 175-177. [百度学术]
BLAŽKOVÁ M, JAVŮRKOVÁ B, VLACH J, et al. Diversity of O antigens within the genus Cronobacter: from disorder to order[J]. Applied and Environmental Microbiology, 2015, 81(16): 5574-5582. [百度学术]
NAIR M K, VENKITANARAYANAN K, SILBART L K, et al. Outer membrane protein A (OmpA) of Cronobacter sakazakii binds fibronectin and contributes to invasion of human brain microvascular endothelial cells[J]. Foodborne Pathogens and Disease, 2009, 6(4): 495-501. [百度学术]
MOHAN N M, VENKITANARAYANAN K S. Cloning and sequencing of the ompA gene of Enterobacter sakazakii and development of an ompA-targeted PCR for rapid detection of Enterobacter sakazakii in infant formula[J]. Applied and Environmental Microbiology , 2006, 72(4): 2539-2546. [百度学术]
FEI P, MAN C, LOU B, et al. Genotyping and Source Tracking of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and an infant formula production factory in China[J]. Applied and Environmental Microbiology , 2015, 81(16): 5430-5439. [百度学术]
Essentials of Glycobiology[M]. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2022. [百度学术]
SUN Y, WANG M, LIU H, et al. Development of an O-antigen serotyping scheme for Cronobacter sakazakii[J]. Applied And Environmental Microbiology , 2011, 77(7): 2209-2214. [百度学术]
WANG L, ZHU W, LU G, et al. In silico species identification and serotyping for Cronobacter isolates by use of whole-genome sequencing data[J]. International Journal of Food Microbiology, 2021, 358: 109405. [百度学术]
MÜLLER A, STEPHAN R, FRICKER-FEER C, et al. Genetic diversity of Cronobacter sakazakii isolates collected from a Swiss infant formula production facility[J]. Journal of Food Protection , 2013, 76(5): 883-887. [百度学术]
BALDWIN A, LOUGHLIN M, CAUBILLA-BARRON J, et al. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes[J]. BMC Microbiology, 2009, 9: 223. [百度学术]
JOSEPH S, FORSYTHE S J. Predominance of Cronobacter sakazakii sequence type 4 in neonatal infections[J]. Emerging Infectious Diseases, 2011, 17(9): 1713-1715. [百度学术]
OGRODZKI P, FORSYTHE S J. CRISPR-cas loci profiling of Cronobacter sakazakii pathovars[J]. Future microbiology, 2016,11: 1507-1519. [百度学术]
WANG M, WANG L, WU P, et al. Genomics and dxperimental analysis reveal a novel factor contributing to the virulence of Cronobacter sakazakii strains associated with neonate infection[J]. Journal of Infectious Diseases, 2019, 220(2): 306-315. [百度学术]
FEI P, JIANG Y, FENG J, et al. Antibiotic and desiccation resistance of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and processing environments[J]. Frontiers in Microbiology, 2017, 8: 316. [百度学术]
SULAIMAN I M, TANG K, SEGARS K, et al. Application of MALDI-TOF mass spectrometry, and DNA sequencing-based SLST and MLST analysis for the identification of Cronobacter spp. isolated from environmental surveillance samples[J]. Archives of Microbiology , 2021, 203(8): 4813-4820. [百度学术]
LI H, FU S, SONG D, et al. Identification, typing and drug resistance of Cronobacter spp. in powdered infant formula and processing environment[J]. Foods, 2023, 12(5): 1084. [百度学术]
FORSYTHE S J, DICKINS B, JOLLEY K A. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis[J]. BMC Genomics, 2014, 15(1): 1121. [百度学术]
PARRA-FLORES J, HOLÝ O, RIFFO FPARRA-FLORES J, et al. Profiling the virulence and antibiotic resistance genes of Cronobacter sakazakii strains isolated from powdered and dairy formulas by whole-genome sequencing[J]. Frontiers in Microbiology, 2021, 12: 694922. [百度学术]
CUI J, HU J, DU X, et al. Genomic analysis of putative virulence factors affecting cytotoxicity of Cronobacter[J]. Frontiers in Microbiology, 2019, 10: 3104. [百度学术]
CARVALHO G G, CALARGA A P, ZORGI N E, et al. Virulence and DNA sequence analysis of Cronobacter spp. isolated from infant cereals[J]. Intional Journal of Food Microbiology, 2022, 376: 109745. [百度学术]
HOLÝ O, PARRA-FLORES J, BZDIL J , et al. Screening of antibiotic and virulence genes from whole genome sequenced Cronobacter sakazakii Isolated from food and milk-producing environments[J]. Antibiotics (Basel), 2023, 12(5): 851. [百度学术]
CHEN Q, JUN L, QIU Y, et al. Short communication: Bioinformatics-based mining of novel gene targets for identification of Cronobacter turicensis using PCR[J]. Journal Of Dairy Science, 2019, 102(7): 6023-6026. [百度学术]
WANG L, WU P, SU Y, et al. Detection of genus and three important species of Cronobacter using novel genus- and species-specific genes identified by large-scale comparative genomic analysis[J]. Frontiers in Microbiology, 2022, 13: 885543. [百度学术]