基于知识图谱技术的食源性疾病风险防范技术研究及应用
作者:
作者单位:

国家食品安全风险评估中心,国家卫生健康委员会食品安全风险评估重点实验室,北京 100021

作者简介:

马大燕 女 博士后 研究方向为人工智能技术在食品安全领域的应用 E-mail:madayan@cfsa.net.cn

通讯作者:

吴永宁 男 研究员 研究方向为化学污染监控技术、食品污染与人体健康关系的风险评估研究 E-mail:wuyongning@cfsa.net.cn

中图分类号:

R155

基金项目:

国家重点研发计划(2020YFF0305005)


Research and application of foodborne disease risk prevention based on knowledge graph technology
Author:
Affiliation:

National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 研究食源性疾病风险防范技术研究及应用。方法 以知识图谱为载体,通过对食品安全事故流行病学调查技术指南及互联网数据进行知识抽取与关系挖掘,获取常见食源性疾病致病因子与临床表现、潜伏期、易感人群、食品来源之间关联关系。结果 构建了食源性疾病知识图谱,包括390个节点和1 375条边,并在此基础上搭建了一个知识问答系统,实现指定食源性疾病致病因子的临床表现、易感人群、可能食物来源、生物标本采集要求等答案的自动获取。结论 本研究创新提出基于知识图谱技术的食源性疾病风险防范体系设计,构建的食源性疾病知识图谱有效解决致病因子相关检测关键数据字段定义不清,数据孤岛严重等问题。本文搭建的食源性疾病知识问答系统,对提升公众的食源性疾病风险认知,并纠正医护人员对食源性疾病相关的食品安全知识和操作行为具有重要的现实意义。

    Abstract:

    Objective To study the research and application of foodborne disease risk prevention.Methods Taking the knowledge graph as the carrier, through knowledge extraction and relationship mining on the technical guide for epidemiological investigation of food safety accidents and internet data, the association between the pathogenic factors of common foodborne diseases and clinical manifestations, incubation period, susceptible population and food sources was deeply explored and obtained.Results The knowledge graph of foodborne diseases was constructed, including 390 nodes and 1 375 edges. On this basis, a knowledge question answering system was constructed to realize the automatic acquisition of answers to the clinical manifestations, susceptible populations, possible food sources and biological sample collection requirements of designated foodborne disease pathogenic factors.Conclusion This research innovatively proposed the design of foodborne disease risk prevention system based on knowledge graph technology. Meanwhile, the constructed foodborne disease knowledge graph can effectively solve unclear definition of key information and serious data islands in the related detection of pathogenic factors. The question answering system built on this basis was of great practical importance to improve the public’s knowledge of foodborne disease risks and to correct the food safety knowledge and operational behaviors of health care professionals related to foodborne diseases.

    参考文献
    相似文献
    引证文献
引用本文

马大燕,潘登,张朝正,吴永宁.基于知识图谱技术的食源性疾病风险防范技术研究及应用[J].中国食品卫生杂志,2022,34(5):1035-1040.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-30
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-01
  • 出版日期:
文章二维码
《中国食品卫生杂志》邮寄地址与联系方式变更通知
关闭