基于Apriori算法的小麦中多组分真菌毒素污染的关联规则挖掘
作者:
作者单位:

1.北京化工大学,北京 100029;2.国家食品安全风险评估中心,北京 100021

作者简介:

薛文博 男 硕士研究生 研究方向为数据挖掘 E-mail: 540615266@qq.com

通讯作者:

梁江 女 研究员 研究方向为食品安全风险评估 E-mail: liangjiang@cfsa.net.cn

中图分类号:

R155

基金项目:

国家重点研发计划(2019YFC1606500);国家食品安全风险评估中心“高层次人才队伍建设523项目”


Association rule mining of multicomponent mycotoxins contamination in wheat based on Apriori algorithm
Author:
Affiliation:

1.Beijing University of Chemical Technology, Beijing 100029, China;2.China National Center for Food Safety Risk Assessment, Beijing 100021, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 为分析主要影响小麦中多组分真菌毒素污染指标之间的关联性,研究不同毒素之间的共污染关系特征。方法 采用关联规则Apriori算法对小麦中多组分真菌毒素的污染监测指标之间的关联性进行数据挖掘分析。根据指标检测值对数据进行风险等级划分,构造出布尔类型的事务数据库,对事务数据库进行频繁项集挖掘,设置阈值最小支持度和最小置信度,迭代重复执行连接、剪枝操作确定出频繁项集,获取强关联规则。通过置信度、支持度、提升度等进行关联规则评价,最后将数据可视化应用在关联规则中,更直观地对规则进行展示与验证。结果 挖掘得到小麦中多组分真菌毒素之间共污染的潜在强关联规则,包括9条单项集共污染毒素强关联规则以及多条组合项集强关联规则。分析验证得到脱氧雪腐镰刀菌烯醇和雪腐镰刀菌烯醇、玉米赤霉烯酮和脱氧雪腐镰刀菌烯醇毒素之间存在共污染关系,置信度分别为92.0%和80.6%。结论 通过数据挖掘得到的强关联规则对小麦毒素风险预警和防控有一定的意义,同时为多毒素联合暴露评估提供依据。

    Abstract:

    Objective To analyze the correlation of muti-mycotoxin contamination in wheat, the co-contamination characteristics of different mycotoxins were studied.Methods Data mining analysis of the association between monitoring data for multiple mycotoxins contamination in wheat was performed using the association rule Apriori algorithm. Boolean data type of transaction database was constructed according to the pollutant index values to risk hierarchy structure to mine frequent item sets of transaction database. To determine frequent item sets and obtain strong association rules, minimum threshold support and minimum confidence was set, and iterative connection and pruning operations were performed repeatedly. Association rules were evaluated by confidence, support and promotion degree, etc. Finally, data visualization was applied to association rules to display and verify rules more intuitively.Results The potential strong association rules of co-contamination of muti-mycotoxins in wheat were found, including 9 strong association rules of single common contamination toxin and several strong association rules of combined term sets. The co-pollution relationship between deoxynivalenol and nivalenol, zearalenone and deoxynivalenol was analyzed and verified. The confidence was 92.0% and 80.6%, respectively.Conclusion The strong association rules obtained by data mining have certain significance for the early warning, prevention and control of wheat toxin risk, which provides basis for the assessment of combined exposure to multiple toxins.

    参考文献
    相似文献
    引证文献
引用本文

薛文博,王小丹,李明璐,唐昊,马宁,张磊,梁江,祝海江.基于Apriori算法的小麦中多组分真菌毒素污染的关联规则挖掘[J].中国食品卫生杂志,2022,34(3):451-458.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-07
  • 出版日期:
文章二维码
《中国食品卫生杂志》邮寄地址与联系方式变更通知
关闭