近红外光谱法快速鉴别转基因大豆模型优化
DOI:
作者:
作者单位:

(中国疾病预防控制中心营养与健康所 国家卫生健康委员会微量元素 与营养重点实验室,北京 100050)

作者简介:

高慧宇 女 助理研究员 研究方向为营养与食品卫生学 E-mail:gaohuiyu2520@163.com 王竹 女 研究员 研究方向为营养与食品卫生学 E-mail:wzhublue@163.com

通讯作者:

中图分类号:

基金项目:

国家转基因生物新品种培育重大专项(2016ZX08011005)


Model optimization for fast discrimination of transgenic soybeans using near-infrared spectroscopy
Author:
Affiliation:

(Key Laboratory of Trace Element Nutrition of National Health Commission,National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的 应用近红外光谱(NIR)结合偏最小二乘判别分析(PLS-DA)建立转基因大豆的快速鉴别模型,并选择最优模型。方法 主成分分析(PCA)用于从光谱数据中提取相关特征并剔除异常样品。在试验中,94份样品用于构建模型,41份样品用作验证评估模型的效果。分别讨论样品形态(整粒和粉末)、波长范围和光谱预处理方法对所建模型判别正确率的影响。结果 粉末状大豆样品建模的效果好于整粒大豆样品。其中判定效果最好的模型,整粒大豆在9 403~5 438 cm-1范围内,采用二阶导数(2nd)处理光谱,模型的校正集和验证集的判定正确率均为100.00%;粉末状大豆在7 505~4 597 cm-1范围内,采用矢量归一化+一阶导数(SNV+1st)处理光谱,模型的校正集和验证集的判定正确率也均为100.00%。结论 通过选择样品形态、波长范围和光谱预处理方法可以优化鉴别模型,提高近红外判别模型的鉴别正确率。

    Abstract:

    Objective Near-infrared (NIR) spectroscopy and partial least squares-discriminant analysis (PLS-DA) were applied to discriminate soybean samples as being transgenic or non-transgenic. The rapid discrimination models for transgenic soybean were established, and the optimal model was selected. Methods Principal component analysis (PCA) was used to extract relevant features from the spectral data and remove anomalous samples. In experimental studies, 94 samples were used to build models and 41 samples were used as the validation to evaluate the performance of the developed models. The effects of sample morphology (intact or ground), wavelength range and spectral pretreatment method on the correctness of the model were discussed. Results Models for intact soybean samples obtain better judgment performance than models for ground samples. The best discriminant model for intact soybean samples possessed both 100.00% discriminant correct rate in calibration and validation sets at 9 403-5 438 cm-1 using second derivative (2nd). The best discriminant model for ground soybean samples also achieved both 100.00% discriminant correct rate in calibration and validation sets at 7 505-4 597 cm-1 using standard normal variate plus first derivative (SNV+1st). Conclusion By selecting sample morphology, wavelength range and spectral pretreatment method, the discrimination model can be optimized and the discriminant correct rate can be significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

高慧宇,王竹,张雪松,王国栋.近红外光谱法快速鉴别转基因大豆模型优化[J].中国食品卫生杂志,2020,32(3):244-249.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-07-03
  • 出版日期:
文章二维码
《中国食品卫生杂志》邮寄地址与联系方式变更通知
关闭