网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

雪腐镰刀菌烯醇危害评估  PDF

  • 周颖颖 1,2,3
  • 宁钧宇 2,3
  • 梁江 1
1. 国家食品安全风险评估中心,北京 100022; 2. 首都医科大学公共卫生学院,北京 100069; 3. 北京市疾病预防控制中心,北京 100013

中图分类号: R155

最近更新:2024-11-13

DOI:10.13590/j.cjfh.2024.08.008

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
EN
目录contents

摘要

目的

对雪腐镰刀菌烯醇(NIV)的健康影响进行危害评估。

方法

通过对文献型数据库以及国内外专业机构网站进行文献的检索、去重、筛选、梳理,基于最终纳入文献的毒理学信息对NIV进行危害评估。

结果

高剂量NIV急性经口暴露后最常见症状为呕吐,亚慢性和慢性毒性试验显示暴露于NIV最主要效应是白细胞计数减少,对免疫、血液系统和生长发育产生危害,并且NIV与呕吐毒素有联合毒性。

结论

长期高剂量暴露于NIV可能会导致机体出现免疫毒性和生殖发育毒性以及白细胞计数减少等敏感毒效应。

雪腐镰刀菌烯醇(Nivalenol,NIV)是由几种镰刀孢霉菌合成产生的次生代谢物,属于B族单端孢霉烯族化合

1。NIV在各种谷物作物(小麦、玉米、大麦、燕麦和黑麦)和谷物食品(面包、麦芽和啤酒)中污染水平较高。1970年诸冈信一等第一次从赤霉病大麦中分离出致呕吐毒素,1972年Morooka等从日本香川县大麦和小麦中再次分离出该物质,并命名为NIV2

NIV污染现象普遍,在世界各地均有报道,人和牲畜在误食被污染的粮谷类后可产生广泛的中毒反应,不仅可引起呕吐、拒食、体质量减轻,还具有皮肤毒性,会损害免疫系统和造血系统。在1973年联合国粮食及农业组织(Food and Agriculture Organization,FAO)和世界卫生组织(World Health Organization,WHO)召开的第三场食品添加剂和污染物的会议上将单端孢霉烯族毒素列为国际优先研究和最危险的天然食品污染物之一。除此之外,有研究表明膳食暴露于NIV与食管癌和胃癌发病率增高有关,但由于其对实验动物致癌性证据并不充分,国际癌症研究中心(International Agency for Research on Cancer,IARC)将NIV列为第三类致癌

3

本文根据系统文献检索方法,制定检索策略,收集NIV毒理学资料,对NIV进行系统研究和危害评估。

1 资料与方法

1.1 文献检索及筛选策略

通过检索文献型数据库和国内外专业机构网站获得NIV的相关毒理学资料。文献型数据库:中国知网(CNKI)、万方数据知识服务平台、PubMed、Toxline,国内外专业机构网站:WHO、美国食品药品监督管理局(Food and Drug Administration,FDA)、联合国粮农组织/世界卫生组织食品添加剂联合专家委员会(Joint FAO/WHO Expert Committee on Food Additives,FAO/WHO JECFA)、粮农组织/世界卫生组织农药残留联席会议(the WHO/FAO Joint Meeting on Pesticide Residues,JMPR)、美国国家环境保护局(US Environmental Protection Agency,USEPA)、德国联邦风险评估中心(Federal Institute for Risk Assessment,BfR)、欧洲食品安全局(European Food Safety Authority,EFSA)、澳新食品标准局(Food Standards Australia New Zealand,FSANZ)、美国农业部(US Department of Agriculture,USDA)、新西兰食品安全局、日本食品安全委员会(Food Safety Commission of Japan,FSCJ)、欧盟食品科学委员会(Scientific Committee on Food,SCF)、FAO、国际食品法典委员、IARC、中华人民共和国生态环境部、国家市场监督管理总局。

中文检索词包括:雪腐镰刀菌烯醇、单端孢霉烯族毒素、NIV毒素。检索表达式包括:限定研究对象:人+人类+人群+动物+啮齿类动物+家畜+体外细胞+作用模式+MOA+替代方法+生物标志物+分子机制;毒性:毒性+危害+急性毒性+亚急性毒性+亚慢性毒性+慢性毒性+遗传毒性+发育毒性+生殖毒性+细胞毒性+神经毒性+致癌性;风险评估:安全评价+安全评估+危险性评估+风险评估+危险评估+暴露评估+毒理学+健康+研究进展。英文检索词包括:nivalenol、NIV、Fusarium nivale、trichothecene toxins及选择相关范围:Adverse Effects、Toxicity、Cytotoxicity等。通过检索词和检索公式的组合检索文献,并追踪纳入文献的参考文献。检索时间从建库至2023年9月12日。

纳入标准:研究对象为动物或人;研究结局关注毒效应终点;通过文献质量评价后筛选高质量文献。排除标准:会议摘要,不提供全文;研究对象为植物;重复报告文献或原始数据不完整。

1.2 系统文献检索结果

利用EndNote软件排除重复文献,根据文献题目和摘要进行初步筛选、再根据文献题录和原文进行二级筛选,最后提取数据汇总结局。CNKI和万方数据知识服务平台检索得到325文献,去重后共282篇文献;PubMed、Toxline数据库检索得到362篇文献,去重后共266篇文献,SCF、IARC、FSCJ、EFSA等专业机构报告共4篇,文献筛选流程如图1所示,筛选流程在Endnote X9上进行,最后纳入参考文献共79篇。

图1  文献筛选流程图

Figure 1  Process diagram of literature screening

2 结果

2.1 理化性质

NIV是一种倍半萜烯类结晶状化合

4,化学结构式见图2,分子量为312.3,熔点为222~223 ℃,易溶于水、乙醇等溶剂,性质稳定,一般的烹煮加工和发酵方法难以破坏该毒素。

图2  NIV的化学结构式

Figure 2  The chemical structural formula of NIV

NIV与脱氧雪腐镰刀菌烯醇(Deoxynivalenol,DON)化学结构高度相似,不同之处在于NIV在单端孢霉烯骨架上含有环氧环,而DON则缺乏这个环氧环结构。DON又被称为呕吐毒素,化学结构式见图3

图3  DON的化学结构式

Figure 3  The chemical structural formula of DON

NIV为无色结晶化合物,可溶于极性溶剂和碳酸钠水溶液。因此,目前去除NIV的有效方法是使用碳酸钠溶液。用1 mol/L的碳酸钠溶液冲洗谷物样品可有效去除至少70%的NIV;1 mol/L碳酸钠溶液浸泡谷物样品24 h可去除42%的NIV,且随着浸泡时间越长,NIV去除的越彻底,浸泡72 h后,NIV可完全去

1

2.2 产毒条件及污染情况

膳食摄入被镰刀菌感染的谷物及其制品是动物和人类暴露NIV的主要途径,NIV产生和污染受到环境因素的广泛影响,包括气候条件、食品处理及储存

5。NIV产毒的最适温度为25 ℃和35 ℃,当气温≤10 ℃时,真菌不产生NIV6。水分活度(aw)在真菌生长及毒素产生的过程中发挥着重要作用。NIV的适宜产毒环境aw为0.99~0.96,NIV产量在aw为0.9817达到最高。除了气温和水分活度外,底物不同亦可影响NIV的污染,据VOGELGSANG8研究,NIV的有利基质为玉米籽粒,其次是小麦、燕麦和水稻。而NAZARI6研究则表明在粮食加工产品中,全麦小麦粉是NIV污染的有利基质。并且不同人群NIV摄入频率和水平与其所处地理位置、年度降水情况、膳食多样性、食物充足程度等条件有关。

NIV是全球性的谷物污染物,目前全球的NIV污染分布(表1)大致为:小麦污染主要在温暖潮湿的地区(澳大利亚、东欧、北美和中国南部),而玉米污染主要在气候寒冷的西欧地

9。在近几十年的毒素污染研究中发现NIV在小麦、大麦、花生和玉米中的浓度范围从μg/kg到超过mg/kg10。污染水平最高的是谷物及其制品(107.2 µg/kg),其次是豆类和豆类产品(31.7 µg/kg)。以谷物为基础的婴儿食品污染水平较低(17.1 µg/kg),而酒精饮料中未发现NIV11

表1  全球NIV污染情况
Table 1  NIV pollution situation
地区样品污染率/%平均值/(μg/kg)污染范围/(μg/kg)参考文献
亚洲 中国,薏仁米 100.0 149.00 20.40~783.00 [12]
中国,11个麦区小麦 100.0 273.44 73.35~393.70 [13]
中国,13省小麦粉 88.4 8.08 0.30~218.20 [14]
中国,13省玉米制品 93.4 11.92 0.30~382.00
中国,西藏青稞 0.7 33.10 33.10 [15]
韩国,谷物豆类及加工产品 77.1 59.00 4.6~370.80 [16]
日本,小麦 55.8 7.00 1.00~27.00 [17]
非洲 埃及,玉米粉及面粉 54.8 131.00 <LOQ~462.00 [18]
尼日利亚,谷类产品 25.0 2.00 1.80~2.50 [19]
美洲 巴西,玉米 10.0 335.00 33.28~683.00 [20]
阿根廷,小麦 18.9 0.22 0.10~0.60 [21]
加拿大,小麦 7.0 57.50 22.10~114.60 [22]
欧洲 波兰,啤酒 56.0 2.40 0.50~7.60 [9]
奥地利,小麦 12.9 34.10 20.20~45.90 [23]
英国,小麦 25.0 10.00 10.00~157.00 [24]

注:  LOQ为定量限

值得注意的是,NIV通常与其他B型单端孢霉烯,特别是DON共存,并在不同的食物基质中被同时检测到。表2展示了NIV与DON、T-2、ZEN等毒素共污染的情

25-26

表2  NIV与其他毒素联合污染情况
Table 2  Joint contamination of NIV and other toxins
来源样品联合污染毒素种类共污染率/%参考文献
巴西 小麦 DON+NIV 3.8 [27]
ZEN+DON+NIV 74.0
苏格兰 燕麦 T-2+DON+NIV 8.3 [28]
T-2+NIV 25.0
中国 小麦 T-2+DON+NIV 100.0 [13]
ZEN+NIV 100.0
薏仁米 NIV+BEA 100.0 [12]
NIV+FB1 92.5
NIV+T-2 50.0
瑞士 小麦 DON+NIV 36.0 [29]
加拿大 大麦 DON+NIV 22.5 [22]
T-2+NIV 2.5
OTA+NIV 2.5

2.3 危害识别

所纳入的文献通过体内外试验方法,包括对NIV的吸收、分布、代谢和排泄过程及毒作用机制的研究,并对其一般毒性、免疫毒性、内分泌干扰、遗传毒性以及致癌性等多种毒效应开展定性和定量分析。

2.3.1 吸收、分布、代谢、排泄

基于小鼠、猪和肉鸡的经口暴露研究,POAPOLATHEP

30、HEDMAN和PETTERSSON31以及KONGKAPAN32发现NIV主要被肠道所吸收,并且分别在60 min、2.5~4.5 h和2.4 h达到最大血浆浓度,分布半衰期和消除半衰期分别为2.53和2.5~14.34 h。

NIV的I相代谢物和Ⅱ相代谢物分别是脱环氧-NIV(DE-NIV)和NIV-3-葡萄糖苷(NIV3Glc

33。已在大鼠、猪、家禽和鱼等动物粪便中证实脱环氧化是已知的NIV的唯一I相代谢途径,且可能与胃肠道微生物菌群相34-36。GRATZ37通过Caco-2/TC7细胞体外模型发现NIV3Glc不能有效地通过肠上皮细胞单层转运,基于大鼠体内研究证实NIV3Glc在胃肠道中发生水解释放其糖苷配基后进一步生成毒性更小的代谢38

NIV主要通过粪便排出,大鼠经口暴露NIV后观察到80%的NIV通过粪便排泄,1%以脱环氧-NIV的形式通过尿液排

39。在各组织器官内未观察到NIV明显的积30,但有研究表明NIV可通过胎盘或乳汁转运到胎鼠或者乳鼠体40

2.3.2 毒作用机制体外细胞实验研究

基于外周血单核细胞研究发现,NIV可抑制丝裂原诱导的细胞增殖,降低抗体依赖性介导的细胞毒性,抑制NK细胞活

41。在Jurkat细胞中观察到NIV诱导的细胞毒性与浓度和时间有关,其中细胞毒性可能是通过磷脂酰丝氨酸外翻、线粒体释放细胞色素C、Pro-caspase-3降解以及Bcl-2降解导致细胞凋亡所诱导42-43。SMITH44观察到THP-1细胞暴露于NIV后发生细胞坏死,且p38、SAPK/JNK和ERK1/2三条经典MAPK信号通路被可结合核糖体的NIV抑制剂快速激活,产生剂量依赖性细胞凋亡,结果提示NIV诱发的细胞坏死可能与丝裂原活化蛋白激酶等相关。

基于肠道相关细胞研究发现,WAN

45和ALASSANE46分别采用MTT法对NIV作用于IPEC-J2细胞和Caco-2细胞的细胞活力进行试验,结果却得到相似的IC50值,分别是0.94和(0.9±0.24) μmol/L,进一步证明NIV可影响细胞增殖,尤其是在细胞增殖水平较高的组织中,如肠上皮细胞。同时,NIV对小牛小肠上皮细胞B细胞的IC50为8.1~0.8 μmol/L47。上述结果表明,与其他物种来源的细胞相比,人源细胞对NIV的反应更41

2.3.3 急性毒性

动物急性经口暴露于高剂量的NIV后最常见的症状为呕吐、体质量减轻、拒食、便血和皮炎,此外还可能出现心跳迟缓、腹泻、出血、水肿、皮肤组织坏死、胃肠道上皮黏膜出血、造血组织破坏和免疫抑制等中毒表现。

基于C57小鼠经口暴露的研究发现,NIV的半数致死量(Median lethal dose,LD50)是38.9 mg/kg·BW,腹膜内、皮下和静脉注射的LD50为5~10 mg/kg·BW,大多数非正常早死小鼠病理结果中肠道存在明显充血和出

48。而F344小鼠经口暴露和皮下注射的NIV LD50分别是19.5和0.9 mg/kg·BW,NIV暴露小鼠表现为萎靡、腹泻和消化道充49。除此之外,B6C3F1小鼠腹腔注射的NIV的LD50是4.0 mg/kg·BW50

WU

50研究表明NIV对动物致呕吐能力大于DON,基于鸭雏经口的致呕吐剂量是1.0 mg/kg·BW,LD50是4.1 mg/kg·BW;NIV诱导水貂出现呕吐效应的半数有效量(Median effective dose,ED50)是180 µg/kg·BW51,未观察到不良效应水平(No observed adverse effect level, NOAEL)是0.1 mg/kg·BW,LOAEL是0.25 mg/kg·BW。除了致呕吐以外,胃肠道反应是NIV另一主要的急性反应。CHEAT52发现急性暴露于1~10 mg/kg·BW NIV后,肠道黏膜发生显著变化,隐窝肠细胞的增殖指数和绒毛顶部的细胞凋亡增加。

2.3.4 亚急性毒性

雌性C24BL小鼠经连续24 d喂饲含30 mg/kg·BW NIV的饲料后,出现了明显的红细胞减少症和轻微的白细胞减少症。超微结构观察发现,其骨髓细胞发生了多核糖体分解。但是在连续30 d给予0.4或2.0 mg/kg·BW的NIV喂食的大鼠中,未检测到相关生物学和血液学参数的显著变化,虽然染毒结束后大鼠均出现肝脏和脾脏重量增加的现象,但在组织学上尚未观察到显著变

53。而相反的是,以含0、6和12 mg/kg的NIV饲料喂食大鼠4周后,大鼠体重增加但肝器官重量减少,并且观察到CYP450和谷胱甘肽转移酶活性的变4954

基于幼龄ICR衍生的肾小球肾炎(Immune complex-mediated glomerulonephritis,ICGN)雄性小鼠经口暴露研究,ICGN和ICR小鼠肾脏对NIV敏感性无差异,结果提示肾脏可能不是NIV靶器

55

2.3.5 亚慢性及慢性毒性

NIV的亚慢性及慢性毒性研究表明NIV的主要不良效应终点为白细胞减少及免疫系统损害。C57小鼠经口持续4或12周暴露于NIV后(0、6、12和30 mg/kg·BW),小鼠体质量增加减缓,饲料消耗减少,4周后在最高剂量组雌性动物中观察到胸腺和脾脏的相对器官重量的显著降低,12周后动物肝脏的相对器官重量降

56。GOUZE57对C57小鼠灌胃给予0.014~8.87 mg/kg·BW的NIV,连续4周后观察到最高剂量组动物的血浆磷酸盐增多,CYP450依赖性单加氧酶和IgM活性降低,血浆碱性磷酸盐和IgG增多等现象,该研究提出NIV的NOAEL为1.8 mg/kg·BW。

TAKAHASHI

58根据经合组织OECD的指南对NIV开展的以血液学不良效应为终点的90天亚慢性毒性实验得到的NIV的NOAEL为6.25 mg/kg·BW。F344大鼠经喂食0、6.25、25或100 mg/kg·BW的NIV后,25和100 mg/kg·BW剂量组的动物体质量增长均被不同程度的抑制,动物出现了稀便的症58-59。在最高剂量组的雄性和所有雌性动物中,白细胞计数均显著降低。此外,最高剂量组大多数动物器官的绝对重量略有减少且雌性的胸腺相对重量明显减少,主要原因可能是动物身体生长减慢。同时,该剂量组中T淋巴细胞/B淋巴细胞(CD3+/B220+)比率呈剂量依赖性降低,CD161/NKR-P1A活性降低,提示NIV可抑制NK细胞活60

NIV慢性毒性研究表明NIV可引起小鼠生长抑制和白细胞减少,其LOAEL为0.7 mg/kg·BW。C57小鼠经持续1年经口暴露NIV(0、6、12和30 mg/kg·BW)后,所有处理组动物的体质量增加和饲料消耗量下降。30 mg/kg·BW剂量组的动物肝脏绝对重量明显减少,而12 mg/kg·BW剂量组的动物肾脏重量明显减少,6 mg/kg·BW剂量组的动物则在喂食1年后出现严重的白细胞减少症,但2年慢性毒性研究的小鼠中未观察到该现

4861

2.3.6 遗传毒性

目前对NIV遗传毒性尚未有明确定论,大量的体内外遗传试验结果为阴性(表3),但有少数试验表明NIV可致DNA损伤和诱导染色体畸变。2013年EFSA基于BONY和FSCJ的研究结果进一步评估认定NIV不太可能具有遗传毒

62

表3  NIV遗传毒性试验
Table 3  Genotoxicity test of NIV
试验种类试验终点受试对象受试浓度试验结果参考文献
体外试验

DNA损伤

DNA链断裂

CHO细胞 50~100 µg/mL 阳性 [63]
回复突变 鼠伤寒沙门菌菌株TA100、TA98

10~100 μg/plate

50 μg/mL

阴性 [64-65]
染色体畸变 中国仓鼠V79细胞 30 ng/mL 阳性 [66-67]
染色体断裂损伤 0.075~0.3 µg/mL 阴性 [68]
DNA损伤 Caco-2细胞 0~0.5 μmol/L

阳性

作用于分裂期-阴性

[69]
基因突变 TK 6细胞 1.56~25 µg/mL 阴性 [70]
动物实验 DNA损伤 小鼠

喂饲20 mg/kg·BW;

腹腔注射3.7 mg/kg·BW

阴性 [62]

DNA损伤

微核形成

基因突变

小鼠 灌胃5~20 mg/kg 阴性 [70]
DNA损伤 小鼠 灌胃0或6 mg/kg·BW 阴性 [71]

2.3.7 生殖发育毒性

对妊娠中期的ICR小鼠行腹腔注射NIV,发现在0.5和1.5 mg/kg·BW剂量组的小鼠胚胎死亡率分别为48%和88%,未观察到胎儿畸

72。该团队另一研究中,ICR小鼠妊娠期喂饲含NIV的霉变大米,在妊娠中期开始灌胃NIV(1~20 mg/kg·BW)。在30 mg/kg·BW喂饲组和大于10 mg/kg·BW灌胃组中,均观察到母体和胚胎毒性。12 mg/kg·BW喂饲组和5 mg/kg·BW灌胃组小鼠中观察到胎儿发育迟73。基于宫内生长迟缓,经口暴露的LOAEL为1.4 mg/kg·BW,灌胃的LOEAL为5 mg/kg·BW。

WANG

74研究表明暴露于NIV后,小鼠卵母细胞中参与纺锤体形成和发挥细胞器功能的多个基因表达改变,线粒体分布异常,线粒体数量、线粒体膜电位和ATP水平降低,从而对小鼠卵母细胞的纺锤体结构和细胞器功能产生不良影响。

2.3.8 免疫毒性

2013年EFSA的报告中提出免疫系统是NIV的作用靶点之

62。在体外,NIV可诱导多种免疫细胞凋亡,如淋巴细胞、树突状细胞和巨噬细胞,导致其功能特性降低。啮齿动物体内研究也表明,暴露于NIV后,其胸腺、派伊尔淋巴结或脾脏等多个免疫器官的淋巴细胞凋亡增加。此外,NIV可增加血浆中的IgA浓度,诱导其在肾脏中沉积。

2.3.8.1 动物实验

NIV急性暴露可诱导骨髓毒性,并影响淋巴器官,小鼠连续24 d暴露于3.5 mg/kg·BW的NIV,可观察到其红细胞减少、白细胞轻度减少,长期接触可致白细胞减少

48

此外,基于小鼠的NIV慢性毒性研究显示,小鼠血清IgA增加,同时在肾脏中观察到与人类IgA肾病相似的免疫病理学变

75。CHOI76基于卵清蛋白特异性T细胞受体Aβ转基因小鼠开展研究,发现NIV可抑制总IgE和抗原特异性IgE的产生,IL-4减少,IL-2表达增加。与此相反,在Balb/c小鼠中虽观察到血清IgA和IgG剂量依赖性增加、肾小球沉积,但未观察到肾小球组织病理学变化;在HIGA小鼠研究中亦未观察到肾小球免疫球蛋白沉积增多或组织病理学改77

NIV还可对淋巴细胞数量产生影响,对ICR雄性小鼠单次经口给予5~15 mg/kg·BW的NIV,给药12~24 h后,胸腺、派伊尔淋巴结、脾脏中淋巴细胞出现剂量依赖的凋亡增

78。同一研究组对雌性BALB/c小鼠单次经口给药15 mg/kg·BW的NIV,发现在NIV发挥免疫毒性的过程派伊尔淋巴结最先受到攻击,但胸腺受到的攻击最严79。在胸腺中,CD4+和CD8+细胞出现选择性损害;派伊尔淋巴结中CD4+细胞、T细胞和B细胞数量减少,IgA水平显著下降;在脾脏中,IgM产生受到抑制。基于F344大鼠的亚慢性研究同样报告了CD4+/CD8+比值升高以及脾脏细胞对YAC-1小鼠淋巴瘤细胞(NK靶细胞)活性增64

2.3.8.2 体外试验

啮齿动物源细胞系体外试验主要是研究NIV对小鼠巨噬细胞、树突状细胞和淋巴细胞的作用。在小鼠J7741巨噬细胞中,NIV诱导细胞凋亡与细胞周期阻滞、Pro-caspase-3降解,并提示NIV免疫毒性与ERK23、Bax和ADP-PARP通路的激活有

80。在RAW 264细胞中,NIV可抑制脂多糖诱导的IFN-β和NO的产生,且具有浓度依赖81。在脂多糖处理的树突状细胞中,NIV可使MHC-Ⅱ和CD11c表达下调、NO产生减少,促进TNF-α的分泌,诱导树突状细胞坏82。而在小鼠原代胸腺细胞中,NIV可减少活细胞的数量,尤其是CD4+、CD8+83

在人源细胞系体外试验中,NIV浓度为72 ng/mL时,可抑制丝裂原诱导的人淋巴细胞胚生

84;THUVANDER85发现在植物血凝素(Phytoagglutin,PHA)和促有丝分裂原PW (Pokeweed)的刺激下,NIV可抑制人类淋巴细胞的增殖和PW诱导免疫球蛋白产生的作用。上述结果提示NIV可通过有丝分裂对人类淋巴细胞胚泡的生成产生抑制作用,从而抑制淋巴细胞增殖。

2.3.9 致癌性

夏求洁

86发现NIV在食管癌高发的河南林县谷物中含量较高,以该地玉米中的NIV配合促癌物十四烷酰佛波醋酸酯TPA多次作用于小鼠皮肤后发生上皮乳头状瘤及多种增生性病变,作用57~64周后部分发展为上皮性癌,该研究结果提示NIV与食管癌的发生密切相关,且可诱发上皮乳头瘤。

IARC基于C57小鼠经口暴露NIV的慢性毒性研究评估其致癌性,与对照组相比,所有处理组动物体质量增加均减少,且所有组别动物肿瘤(主要是淋巴瘤)发病率相似。SAKAI

87应用V-ha-ras转染的BALB/3T3细胞进行体外短期转化试验,发现NIV非肿瘤的启动子和增强子。根据上述研究,目前无法得出NIV在动物体内具有致癌性的结论。

2.3.10 NIV与DON联合毒性

NIV和DON化学结构相似,有许多共同的毒理学特性,如可引起呕吐、腹泻。此外,这两种毒素都可抑制蛋白合成,MAPKs应激性激活和血清碱性磷酸酶水平增

10。C57小鼠经口暴露于NIV和DON后,联合给药和单独给药所观察到的反应相似,两者对血浆IgA和肝脏DCNB结合过程的影响可能是相加或协同作88。NIV和DON均被报道具有免疫毒性且评价指标之一是对活化巨噬细胞释放NO的抑制作用,研究发现在脂多糖诱导下NIV和DON抑制小鼠巨噬细胞活化,且为浓度呈正相关的相加作89。ICR小鼠经口暴露于NIV和DON后,两种毒素可通过与半胱天冬蛋白酶有关机制或内在凋亡途径诱导细胞死亡,但毒素联合作用引起的淋巴细胞死亡率较单独作用90。WAN91利用IPEC-J2研究DON和NIV单独及混合暴露对促炎因子mRNA表达的影响,结果表明0.5NIV-0.5DON组合相加形式可以诱导IL1β、TNFα、MCP-1的显著上调,这种变化可能与细胞毒性有关。

2.4 危害特征描述

IARC(1993)基于1989年Ohtsubo的慢性毒性研究认为没有足够的证据表明雪腐镰刀菌烯醇对实验动物具有致癌性,同时没有可用的人体实验数据,总体结论是致癌性不可分类(第3组92。2000年,SCF首次发表了关于NIV的结论,并确定了临时每日耐受摄入量tTDI为0~0.7 µg/kg BW93。之后FSCJ、EFSA分别在2010年和2013年相继对NIV提出科学意见(表4)。

表4  各机构对NIV的科学意见
Table 4  Opinions of various institutions on NIV
机构设置依据推荐值/(µg/kg BW)
SCF[93] 一般毒性、血液毒性和免疫毒性 tTDI:0~0.7
FSCJ[94] 90天大鼠亚慢性实验及敏感终点效应为白细胞计数下降 TDI:0.4
EFSA[62] 敏感终点效应为白细胞计数下降及18个欧洲国家10年的NIV流行数据

ADI:1.2

ArfD:14

注:  TDI:每日耐受摄入量;ADI:每日允许摄入量;ArfD:短期参考剂量

3 小结

NIV在我国谷物等食品中普遍存在污染问题,且与其他真菌毒素存在较明显的共污染现象。NIV通过膳食暴露可进入人体或动物体内,产生以呕吐为主的急性毒性效应及以白细胞减少为主的亚慢性、慢性毒性效应,具有生长发育毒性和免疫毒性。系统文献分析结果表明,NIV的免疫毒性为其主要敏感毒性效应,可诱导免疫器官细胞凋亡和IgA在肾脏沉积,效应终点为白细胞减少。基于该敏感毒性效应终点,EFSA提出了NIV的ADI为1.2 µg/kg BW。此外,NIV常与其他镰刀菌毒素联合污染所产生累积毒性效应应予以关注。

参考文献

1

KUMAR PMAHATO D KGUPTA Aet al. Nivalenol mycotoxin concerns in foods: An overview on occurrence, impact on human and animal health and its detection and management strategies[J]. Toxins2022148): 527. [百度学术] 

2

赵瑞琦曹峻岭. 真菌毒素NIV研究进展[J]. 国外医学(医学地理分册)19994): 166-169. [百度学术] 

ZHAO R QCAO J L. Progress in the study of mycotoxin NIV[J]. In Chinese Foreign Medicine (Medical Geography)19994): 166-169. [百度学术] 

3

IARC. List of classifications[EB/OL]. (2023-10-09) [2023-10-09]. https://monographs.iarc.who.int/list-of-classifications. [百度学术] 

4

WU QDOHNAL VKUCA Ket al. Trichothecenes: Structure-toxic activity relationships[J]. Current Drug Metabolism2013146): 641-660. [百度学术] 

5

SHEN C MHU Y CSUN H Yet al. Geographic distribution of trichothecene chemotypes of the Fusarium graminearum species complex in major winter wheat production areas of China[J]. Plant Disease2012968): 1172-1178. [百度学术] 

6

NAZARI LPATTORI EMANSTRETTA Vet al. Effect of temperature on growth, wheat head infection, and nivalenol production by Fusarium poae[J]. Food Microbiology20187683-90. [百度学术] 

7

HOPE RMAGAN N. Two‐dimensional environmental profiles of growth, deoxynivalenol and nivalenol production by Fusarium culmorum on a wheat‐based substrate[J]. Letters in Applied Microbiology2003371): 70-74. [百度学术] 

8

VOGELGSANG SSULYOK MBäNZIGER Iet al. Effect of fungal strain and cereal substrate on in vitro mycotoxin production by Fusarium poae and Fusarium avenaceum[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2008256): 745-757. [百度学术] 

9

BRYŁA MKSIENIEWICZ-WOŹNIAK EWAŚKIEWICZ Aet al. Co-occurrence of nivalenol, deoxynivalenol and deoxynivalenol-3-glucoside in beer samples[J]. Food Control201892319-324. [百度学术] 

10

JI FHE DOLANIRAN A Oet al. Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review[J]. Food Production, Processing and Nutrition201911): 1-14. [百度学术] 

11

ZINGALES VFERNáNDEZ-FRANZóN MRUIZ M J. Occurrence, mitigation and in vitro cytotoxicity of nivalenol, a type B trichothecene mycotoxin – Updates from the last decade (2010-2020)[J]. Food and Chemical Toxicology2021152112182. [百度学术] 

12

LIU CXU WNI Let al. Development of a sensitive simultaneous analytical method for 26 targeted mycotoxins in coix seed and Monte Carlo simulation-based exposure risk assessment for local population[J]. Food Chemistry2024435137563. [百度学术] 

13

马玉彤刘太国文才艺. 我国不同麦区小麦镰刀菌毒素检测及毒素污染分析[J]. 植物保护学报2019462): 266-273. [百度学术] 

MA Y TLIU T GWEN C Yet al. Detection of Fusarium oxysporum toxin in wheat and analysis of mycotoxin contamination in different wheat regions of China[J]. In Chineses Journal of Plant Protection2019462): 266-273. [百度学术] 

14

王伟邵兵朱江辉. 中国谷物制品中重要镰刀菌毒素膳食暴露评估研究 [J]. 卫生研究2010396): 709-714. [百度学术] 

WANG WSHAO BZHU J Het al. Dietary exposure assessment of some important Fusarium toxins in cereal-based products in China [J]. In Chinese Health Research2010396): 709-714. [百度学术] 

15

ZHANG T WWU D LLI W Det al. Occurrence of Fusarium mycotoxins in freshly harvested highland barley (qingke) grains from Tibet, China[J]. Mycotoxin Research2023393): 193-200. [百度学术] 

16

LEE S YWOO S YTIAN Fet al. Occurrence of deoxynivalenol, nivalenol, and their glucosides in Korean market foods and estimation of their population exposure through food consumption[J]. Toxins2020122): 89. [百度学术] 

17

TANAKA HTAKINO MSUGITA-KONISHI Yet al. Determination of nivalenol and deoxynivalenol by liquid chromatography/atmospheric pressure photoionization mass spectrometry[J]. Rapid communications in mass spectrometry20092319): 3119-3124. [百度学术] 

18

GAB-ALLAH M ATAHOUN I FYAMANI R Net al. Natural occurrence of deoxynivalenol, nivalenol and deoxynivalenol-3-glucoside in cereal-derived products from Egypt[J]. Food control2022137108974. [百度学术] 

19

KAYODE O FSULYOK MFAPOHUNDA S Oet al. Mycotoxins and fungal metabolites in groundnut- and maize-based snacks from Nigeria[J]. Food Additives & Contaminants: Part B201364): 294-300. [百度学术] 

20

TONIAL SIMõES CKOBS VIDAL JDA ROSA DA SILVA Cet al. A two-year study on the occurrence and concentration of mycotoxins in corn varieties with different endosperm textures[J]. 202310314): 7199-206. [百度学术] 

21

BASíLICO M L ZPOSE GLUDEMANN Vet al. Fungal diversity and natural occurrence of fusaproliferin, beauvericin, deoxynivalenol and nivalenol in wheat cultivated in Santa Fe Province, Argentina[J]. Mycotoxin research2010262): 85-91. [百度学术] 

22

SHI HSCHWAB WYU P. Natural occurrence and co-contamination of twelve mycotoxins in industry-submitted cool-season cereal grains grown under a low heat unit climate condition[J]. Toxins (Basel)2019113): 160. [百度学术] 

23

WARTH BPARICH AATEHNKENG Jet al. Quantitation of mycotoxins in food and feed from Burkina Faso and Mozambique Using a modern LC-MS/MS multitoxin method[J]. Journal of Agricultural and Food Chemistry20126036): 9352-9363. [百度学术] 

24

EDWARDS S G. Fusariummycotoxin content of UK organic and conventional barley[J]. Food Additives & Contaminants: Part A2009268): 1185-1190. [百度学术] 

25

COVARELLI LBECCARI GPRODI Aet al. Fusarium species, chemotype characterisation and trichothecene contamination of durum and soft wheat in an area of central Italy[J]. Journal of the science of food and agriculture2015953): 540-551. [百度学术] 

26

SCHOLLENBERGER MMÜLLER H MERNST Ket al. Occurrence and distribution of 13 trichothecene toxins in naturally contaminated maize plants in Germany[J]. Toxins (Basel)2012410): 778-787. [百度学术] 

27

CALORI-DOMINGUES M ABERNARDI C MNARDIN M Set al. Co-occurrence and distribution of deoxynivalenol, nivalenol and zearalenone in wheat from Brazil[J]. Food Additives & Contaminants Part B, Surveillance, 201692): 142-151. [百度学术] 

28

DAUD NCURRIE VDUNCAN Get al. Free and modified mycotoxins in organic and conventional oats (Avena sativa L.) grown in Scotland[J]. Toxins (Basel)2023154): 247. [百度学术] 

29

DORN BFORRER H RJENNY Eet al. Fusarium species complex and mycotoxins in grain maize from maize hybrid trials and from grower’‍s fields[J]. Journal of Applied Microbiology20111113): 693-706. [百度学术] 

30

POAPOLATHEP ASUGITA-KONISHI YDOI Ket al. The fates of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice[J]. Toxicon: Official Journal of the International Society on Toxinology2003418): 1047-1054. [百度学术] 

31

HEDMAN RPETTERSSON H. Transformation of nivalenol by gastrointestinal microbes[J]. Archives of Animal Nutrition1997504): 321-329. [百度学术] 

32

KONGKAPAN JGIORGI MPOAPOLATHEP Set al. Toxicokinetics and tissue distribution of nivalenol in broiler chickens[J]. Toxicon: Official Journal of the International Society on Toxinology201611131-36. [百度学术] 

33

KNUTSEN H KBARREGÅRD LBIGNAMI Met al. Appropriateness to set a group health based guidance value for nivalenol and its modified forms[J]. EFSA journal European Food Safety Authority2017154): e04751. [百度学术] 

34

GARALEVICIENE DPETTERSSON HELWINGER K. Effects on health and blood plasma parameters of laying hens by pure nivalenol in the diet[J]. Journal of animal physiology and animal nutrition20028611-12): 389-398. [百度学术] 

35

GUAN SHE JYOUNG J Cet al. Transformation of trichothecene mycotoxins by microorganisms from fish digesta[J]. Aquaculture20092903): 290-295. [百度学术] 

36

ERIKSEN G SPETTERSSON HJOHNSEN Ket al. Transformation of trichothecenes in ileal digesta and faeces from pigs[J]. Archives of Animal Nutrition2002564): 263-274. [百度学术] 

37

GRATZ S WDINESH RYOSHINARI Tet al. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro[J]. Molecular nutrition & Food Research2017614): 1600680. [百度学术] 

38

SCHWARTZ-ZIMMERMANN H EBINDER S BHAMETNER Cet al. Metabolism of nivalenol and nivalenol-3-glucoside in rats[J]. Toxicology Letters201930643-52. [百度学术] 

39

ONJI YDOHI YAOKI Yet al. Deepoxynivalenol: A new metabolite of nivalenol found in the excreta of orally administered rats[J]. Journal of Agricultural and Food Chemistry1989372): 478-481. [百度学术] 

40

POAPOLATHEP ASUGITA-KONISHI YPHITSANU Tet al. Placental and milk transmission of trichothecene mycotoxins, nivalenol and fusarenon-X, in mice[J]. Toxicon: Official Journal of the International Society on Toxinology2004441): 111-113. [百度学术] 

41

TARANU IMARINA D EBURLACU Ret al. Comparative aspects of in vitro proliferation of human and porcine lymphocytes exposed to mycotoxins[J]. Archives of Animal Nutrition2010645): 383-393. [百度学术] 

42

PESTKA J JUZARSKI R LISLAM Z. Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: Role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes[J]. Toxicology20052062): 207-219. [百度学术] 

43

NASRI TBOSCH R RVOORDE Set al. Differential induction of apoptosis by type A and B trichothecenes in Jurkat T-lymphocytes[J]. Toxicology in vitro: An International Journal Published in Association with BIBRA2006206): 832-840. [百度学术] 

44

SMITH M CMADEC STROADEC Set al. Effects of fusariotoxin co-exposure on THP-1 human immune cells[J]. Cell Biology and Toxicology2018343): 191-205. [百度学术] 

45

WAN L YTURNER P CEL-NEZAMI H. Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells[J]. Food and chemical toxicology: An International Journal Published for the British Industrial Biological Research Association201357276-283. [百度学术] 

46

ALASSANE-KPEMBI IKOLF-CLAUW MGAUTHIER Tet al. New insights into mycotoxin mixtures: The toxicity of low doses of type B trichothecenes on intestinal epithelial cells is synergistic[J]. Toxicology and Applied Pharmacology20132721): 191-198. [百度学术] 

47

REISINGER NSCHÜRER-WALDHEIM SMAYER Eet al. Mycotoxin occurrence in maize silage-A neglected risk for bovine gut health?[J]. Toxins (Basel)20191110): 577. [百度学术] 

48

RYU J COHTSUBO KIZUMIYAMA Net al. The acute and chronic toxicities of nivalenol in mice[J]. Fundamental and applied toxicology: Official Journal of the Society of Toxicology1988111): 38-47. [百度学术] 

49

KAWASAKI YUCHIDA OSEKITA Ket al. Single and repeated oral administration toxicity studies of nivalenol in F344 rats[J]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi)1990312): 144-154. [百度学术] 

50

WU WFLANNERY B MSUGITA-KONISHI Yet al. Comparison of murine anorectic responses to the 8-ketotrichothecenes 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, fusarenon X and nivalenol[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association2012506): 2056-2061. [百度学术] 

51

WU WBATES M ABURSIAN S Jet al. Comparison of emetic potencies of the 8-ketotrichothecenes deoxynivalenol, 15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, fusarenon X, and nivalenol[J]. Toxicological Sciences : An Official Journal of the Society of Toxicology20131311): 279-291. [百度学术] 

52

CHEAT SGEREZ J RCOGNIÉ Jet al. Nivalenol has a greater impact than deoxynivalenol on pig jejunum mucosa in vitro on explants and in vivo on intestinal loops[J]. Toxins (Basel)201576): 1945-1961. [百度学术] 

53

RYU J COHTSUBO KIZUMIYAMA Net al. Effects of nivalenol on the bone marrow in mice[J]. The Journal of Toxicological Sciences1987121): 11-21. [百度学术] 

54

YABE THASHIMOTO HSEKIJIMA Met al. Effects of nivalenol on hepatic drug-metabolizing activity in rats[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association1993318): 573-581. [百度学术] 

55

INOUE KTAKAHASHI MKODAMA Yet al. The kidneys of infant mice are not sensitive to the food mycotoxin contaminant nivalenol[J]. Journal of Toxicologic Pathology2014271): 57-66. [百度学术] 

56

YAMAMURA HKOBAYASHI TRYU J Cet al. Subchronic feeding studies with nivalenol in C57BL/6 mice[J]. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association1989279): 585-90. [百度学术] 

57

GOUZE M ELAFFITTE JPINTON Pet al. Effect of subacute oral doses of nivalenol on immune and metabolic defence systems in mice[J]. Veterinary Research2007384): 635-646. [百度学术] 

58

TAKAHASHI MSHIBUTANI MSUGITA-KONISHI Yet al. A 90-day subchronic toxicity study of nivalenol, a trichothecene mycotoxin, in F344 rats[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association2008461): 125-135. [百度学术] 

59

SUGITA-KONISHI YKUBOSAKI ATAKAHASHI Met al. Nivalenol and the targeting of the female reproductive system as well as haematopoietic and immune systems in rats after 90-day exposure through the diet[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2008259): 1118-1127. [百度学术] 

60

KUBOSAKI AAIHARA MPARK B Jet al. Immunotoxicity of nivalenol after subchronic dietary exposure to rats[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association2008461): 253-258. [百度学术] 

61

OHTSUBO KRYU J CNAKAMURA Ket al. Chronic toxicity of nivalenol in female mice: A 2-year feeding study with Fusarium nivale Fn 2B-moulded rice[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association1989279): 591-8. [百度学术] 

62

EFSA. Scientific Opinion on risks for animal and public health related to the presence of nivalenol in food and feed[J]. EFSA Journal2013116): 3262. [百度学术] 

63

TSUDA SKOSAKA YMURAKAMI Met al. Detection of nivalenol genotoxicity in cultured cells and multiple mouse organs by the alkaline single-cell gel electrophoresis assay[J]. Mutation Research19984153): 191-200. [百度学术] 

64

TAKAHASHI HYAZAKI HKIMURA Set al. Detection of mutagenic activity of mycotoxins by Salmonella typhimurium/microsome assay and ultraweak chemiluminescence[J]. Nippon Eiyo Shokuryo Gakkaishi1992452): 169-173. [百度学术] 

65

BÁRTA IŠMERÁK PPOLÍVKOVÁ Zet al. Mutagenic effect of nivalenol, fusarenon X, penicillic acid and their combinations with aflatoxin B1[J]. Hygiena20014663-71. [百度学术] 

66

HSIA C CWU J LLU X Qet al. Natural occurrence and clastogenic effects of nivalenol, deoxynivalenol, 3-acetyl-deoxynivalenol, 15-acetyl-deoxynivalenol, and zearalenone in corn from a high-risk area of esophageal cancer[J]. Cancer Detection and Prevention1988132): 79-86. [百度学术] 

67

HSIA C CWU Z YLI Y Set al. Nivalenol, a main Fusarium toxin in dietary foods from high-risk areas of cancer of esophagus and gastric cardia in China, induced benign and malignant tumors in mice[J]. Oncology Reports2004122): 449-456. [百度学术] 

68

RYU J CCHANG I M J T R. A study on the clastogenicity of trichothecene mycotoxins in Chinese hamster lung cells[J]. Toxicological Research199391): 13-21. [百度学术] 

69

BONY SOLIVIER-LOISEAU LCARCELEN Met al. Genotoxic potential associated with low levels of the Fusarium mycotoxins nivalenol and fusarenon X in a human intestinal cell line[J]. Toxicology in vitro: An International Journal Published In Association with BIBRA2007213): 457-65. [百度学术] 

70

LE HéGARAT LTAKAKURA NSIMAR Set al. The in vivo genotoxicity studies on nivalenol and deoxynivalenol[J]. EFSA Supporting Publications20141111): 697E. [百度学术] 

71

FSCJ. Risk assessment report: Deoxynivalenol and nivalenol (mycotoxin)[EB/OL]. (2023-10-09) [2023-10-09]. https://www.fsc.go.jp/english/evaluationreports/nm_toxins/rar_donniv_fs872_2010_nm.pdf [百度学术] 

72

ITO YOHTSUBO KISHII Ket al. Effects of nivalenol on pregnancy and fetal development of mice[J]. Mycotoxin Research198622): 71-77. [百度学术] 

73

ITO YUENO YTANAKA Tet al. Embryotoxicity of oral nivalenol in mice[J]. 2009198827): 33-36. [百度学术] 

74

WANG YPAN Z NXING C Het al. Nivalenol affects spindle formation and organelle functions during mouse oocyte maturation[J]. Toxicology and Applied Pharmacology2022436115882. [百度学术] 

75

HINOSHITA FSUZUKI YYOKOYAMA Ket al. Experimental IgA nephropathy induced by a low-dose environmental mycotoxin, nivalenol[J]. Nephron1997754): 469-478. [百度学术] 

76

CHOI C YNAKAJIMA-ADACHI HKAMINOGAWA Set al. Nivalenol inhibits total and antigen-specific IgE production in mice[J]. Toxicology and applied pharmacology20001651): 94-98. [百度学术] 

77

DEWA YKEMMOCHI SKAWAI Met al. Rapid deposition of glomerular IgA in BALB/c mice by nivalenol and its modifying effect on high IgA strain (HIGA) mice[J]. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft fur Toxikologische Pathologie2011631-2): 17-24. [百度学术] 

78

POAPOLATHEP AOHTSUKA RKIATIPATTANASAKUL Wet al. Nivalenol--induced apoptosis in thymus, spleen and Peyer’‍s patches of mice[J]. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft fur Toxikologische Pathologie2002536): 441-446. [百度学术] 

79

POAPOLATHEP ANAGATA TSUZUKI Het al. Development of early apopotosis and changes in lymphocyte subsets in lymphoid organs of mice orally inoculated with nivalenol[J]. Experimental and Molecular Pathology2003751): 74-79. [百度学术] 

80

MARZOCCO SRUSSO RBIANCO Get al. Pro-apoptotic effects of nivalenol and deoxynivalenol trichothecenes in J774A.1 murine macrophages[J]. Toxicology Letters20091891): 21-26. [百度学术] 

81

SUGIYAMA KMUROI MTANAMOTO Ket al. Deoxynivalenol and nivalenol inhibit lipopolysaccharide-induced nitric oxide production by mouse macrophage cells[J]. Toxicology Letters20101922): 150-154. [百度学术] 

82

LUONGO DSEVERINO LBERGAMO Pet al. Trichothecenes NIV and DON modulate the maturation of murine dendritic cells[J]. Toxicon: Official Journal of the International Society on Toxinology2010551): 73-80. [百度学术] 

83

POAPOLATHEP AKUMAGAI SSUZUKI Het al. Development of early apoptosis and changes in T-cell subsets in mouse thymocyte primary cultures treated with nivalenol[J]. Experimental and Molecular Pathology2004772): 149-152. [百度学术] 

84

FORSELL J HPESTKA J J. Relation of 8-ketotrichothecene and zearalenone analog structure to inhibition of mitogen-induced human lymphocyte blastogenesis[J]. Applied and Environmental Microbiology1985505): 1304-1307. [百度学术] 

85

THUVANDER AWIKMAN CGADHASSON I. In vitro exposure of human lymphocytes to trichothecenes: Individual variation in sensitivity and effects of combined exposure on lymphocyte function[J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association1999376): 639-648. [百度学术] 

86

夏求洁陆小秋吴建丽. 食管贲门癌高发区粮食中的单端孢霉烯族毒素及其致癌潜力[J]. 中华肿瘤杂志1988101): 4-8. [百度学术] 

XIA Q JLU X QWU J Let al. Trichothecenes toxins and their carcinogenic potential in grains from areas with high incidence of esophageal cardia cancer[J]. Chinese Journal of Tumors1988101): 4-8. [百度学术] 

87

SAKAI ASUZUKI CMASUI Yet al. The activities of mycotoxins derived from Fusarium and related substances in a short-term transformation assay using v-Ha-ras-transfected BALB/3T3 cells (Bhas 42 cells)[J]. Mutation research20076301-2): 103-111. [百度学术] 

88

GOUZE M ELAFFITTE JDEDIEU Get al. Individual and combined effects of low oral doses of deoxynivalenol and nivalenol in mice[J]. Cellular and Molecular Biology (Noisy-le-Grand, France)2005, 51S: OL809- OL817. [百度学术] 

89

SUGIYAMA KKAWAKAMI HKAMATA Yet al. Effect of a combination of deoxynivalenol and nivalenol on lipopolisaccharide-induced nitric oxide production by mouse macrophages[J]. Mycotoxin Research2011271): 57-62. [百度学术] 

90

AUPANUN SPHUEKTES PPOAPOLATHEP Set al. Individual and combined cytotoxicity of major trichothecenes type B, deoxynivalenol, nivalenol, and fusarenon-X on Jurkat human T cells[J]. 201916029-37. [百度学术] 

91

WAN L-Y MWOO C-S JTURNER P Cet al. Individual and combined effects of Fusarium toxins on the mRNA expression of pro-inflammatory cytokines in swine jejunal epithelial cells[J]. Toxicology Letters20132203): 238-246. [百度学术] 

92

IARC. Some naturally occurring substances: Food items and constituents, heterocyclic aromatic amines and mycotoxins[J]. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans199356245-395. [百度学术] 

93

SCF. Opinion of the scientific committee on food on fusarium toxins part 41: Nivalenol[EB/OL]. (2023-10-09) [2023-10-09]. https: //ec.europa.eu/food/fs/sc/scf/out74_en.pdf. [百度学术] 

94

FOOD SAFETY COMMISSION OF J. Deoxynivalenol and nivalenol (2nd edition)[assuring the maximum level of deoxynivalenol in wheat] (natural toxins and mycotoxins)[J]. Food Safety202084): 115-117. [百度学术]