摘要
准确、快速地检测双酚A(BPA)是减少食品中BPA污染的重要环节。表面增强拉曼光谱(SERS)技术作为一种新型的快速检测技术,具有无损、准确、快速、图谱指纹特征强等优点,在食品中BPA快速检测方面具有巨大潜力。本文介绍了SERS的机制及SERS技术在食品中BPA快速检测方面的应用,主要综述了不同SERS基底快速检测BPA的研究进展,以期为BPA的快速检测提供理论支撑。
双酚A(Bisphenol A,BPA)是一种重要的化工原料,被广泛应用于合成环氧树脂和聚碳酸脂等有机高分子材料,但BPA难以降解,排放至环境中会通过食物链进入人体。自20世纪60年代以来,BPA被用于婴幼儿奶瓶及饮料、奶粉等食品的包装容器内侧涂层中,研究发现食品包装材料中的BPA可以渗透迁移至食品
BPA常用的检测方法主要有高效液相色谱法、气相色谱-质谱联用法和高效液相色谱-质谱联用法等色谱分析法、传感检测和免疫检测方法。色谱分析法是常见的仪器分析方法,准确度高但前处理较繁琐复杂,如气相色谱法需要提前对酚类物质进行衍生化处理等,检测成本相对较高。传感检测和免疫检测方法是近年发展起来的快速分析方法,其检测灵敏度较高,操作简单,用时短,成本低,适合现场快速检测,但在准确度、基质干扰等方面仍待提高,如酶联免疫法等检测方法存在假阴性等问
近年来,拉曼光谱技术在检测分析领域显示出巨大的应用潜力,尤其表面增强拉曼光谱技术(Surface enhanced Raman spectroscopy,SERS)以其快速、无损、前处理简单、灵敏度高、图谱指纹特征强及适合含水体系分析等独特优势,广泛应用于食品安全等现场快速检测领域,可有效提高食品安全监管效
拉曼光谱效应是印度物理学家C.V. RAMAN在1928年研究单色光穿过透明液体介质时发现的,当光照液体时有很少一部分散射光频率发生改变,与入射光频率不同,这种现象称之为非弹性散射,即拉曼散射。但拉曼光谱信号非常弱,极大地限制了拉曼光谱的应用。1974年,FLEIISCHMANN等发现粗糙银电极表面吡啶分子的拉曼信号有显著增强,大约可以增强1
相关研究发现SERS的增强机制主要有电磁场增强机制(Electromagnetic enhancement mechanism,EM)和化学增强机制(Chemical enhancement mechanism,CM)两种共同起作用,其原理图见

图 1 SERS的电磁场增强机制(A
Figure 1 The electromagnetic (A) and chemical (B) enhancement mechanism of SERS
SERS技术的关键要素是基底的制备,拉曼信号的增强与基底密切相关,基底的成分、尺寸、形貌不同,其增强效果不同,基底的尺寸、形貌等一致性影响SERS技术的稳定性和重现性。如在实际应用中食品等复杂基质会影响SERS基底的稳定性,这需要所制备的SERS基底足够稳定来避免基质的干扰,而且基底的尺寸、形貌等一致性会影响实际应用中实验的重现性。近年来,该领域学者不断致力于研究各种优异的SERS基底,常见SERS基底包括不同形貌的单颗粒纳米材料、核-壳型纳米材料和纳米组装体
单颗粒金属纳米材料(常见有金、银等)具有丰富的表面光学性质,纳米颗粒成分、尺寸、形状及表面化学性质会影响其拉曼增强信号。制备贵金属金、银纳米颗粒最常用的是化学还原法,利用柠檬酸钠、硼氢化钠等化学还原剂,将氯金酸或硝酸银还原形成不同形状、大小的金属纳米颗粒,如

图 2 不同粒径、形貌的金纳米颗粒TEM图,(A)纳米微球(B)纳米立方体(C)纳米星(D)(E)(F)长径比分别为2.4、3.4、4.6的纳米棒(G)(H)(I)(J)纵横比分别为1.5、2.7、3.9、4.7的纳米锥
Figure 2 Representative transmission electron microscopy images of Au nanoparticles of different shapes and sizes, (A) Nanospheres. (B) Nanocubes. (C) Nanobranches. (D) (E) (F) Nanorods (aspect ratio 2.4, 3.4, 4.6). (G) (H) (I) (J) Nanobipyramids (aspect ratio 1.5, 2.7, 3.9, 4.7)

图 3 不同粒径和形貌的银纳米颗粒SEM图(A)纳米球(B)截断立方体(C)金字塔形(D)25 nm立方体(E)80 nm立方体(F)银纳米线
Figure 3 Representative scanning electron microscopic images of Ag nanoparticles of different shapes and sizes, (A) Nanospheres. (B) Truncated Nanocubes. (C) Right bipryamids (D) 25 nm Nanocubes (E) 80 nm Nanocubes (F) Nanowires.
随着SERS技术的快速发展,金、银等纳米核壳结构及组装体等新型复合SERS基底不断被研究报道。这些新型复合SERS基底很大程度提高了SERS传感检测的灵敏度,成为更有效的拉曼增强基底,拓展了SERS技术的应用。相对单个纳米颗粒,核壳结构及组装体中多层金属或多个粒子之间会有更强的电磁场增强区域,产生倍增的SERS信号,从而大大提高了传感检测的灵敏度,为SERS快速、超灵敏传感检测提供了更多的思
综上,加快开发稳定、有效、重现性高、价格便宜的SERS基底,是拓展SERS在快速检测领域的应用的一个关键因素。
BPA的固体标准品具有较丰富的拉曼信号,其拉曼指纹图谱是特异性的,其主要拉曼光谱峰为640、830、936、1 112、1 180、1 616 c
YAN
张磊
XU
FENG
赵浩
SERS基底 | BPA线性范围 | 最低检出限 | 检测基质 |
---|---|---|---|
纳米 |
1.0×1 |
4.3×1 | 牛奶 |
纳米 | 0.05~20 ng/mL | 0.005 ng/mL | 水 |
纳米金(免疫层析 | 0~50 ng/mL | 0.1 ng/mL | 自来水、桶装水 |
金纳米星-银 |
1×1 |
5×1 | 自来水 |
金@银核壳结 | 0.01~1 ng/mL | 2.8 pg/mL | 瓶装水、牛奶 |
金@银核壳结 | 1 ng/mL~10 μg/mL | 1 ng/mL | 水 |
SiO2@Ag核壳结 |
1.75×1 |
1.46×1 | 自来水、牛奶 |
硅纤维上单层石墨烯包覆银纳米粒 | 2~100 μg/L | 1 μg/L | 蒸馏水 |
Ag@MI |
1×1 |
1 | 自来水 |
金纳米颗粒-金纳米棒端面组装的异质三聚组装 | 0.001~1 ng/mL | 3.9 pg/mL | 自来水 |
多枝状金纳米颗 |
6×1 |
5.94×1 | 酱油、食醋、钙奶和桶装饮用水 |
本文主要综述了新型SERS快速检测技术的原理、常见基底及其在食品中BPA检测方面的最新研究进展。SERS技术具有指纹特性强、灵敏度高、快速无损、前处理简单等优点,在快速检测领域中具有巨大潜力,可以作为食品安全监管现场检测的技术支撑。未来需要继续加深SERS基底的进一步研究,设计更稳定、高效的基底,以提高SERS检测的重现性和稳定性,扩大其在快速检测领域的应用推广,从而更好地服务于食品安全监管。
参考文献
艾舜豪, 李霁, 王晓南, 等. 太湖双酚A的水质基准研究及风险评价[J]. 环境科学研究, 2020, 33(3): 581-588. [百度学术]
AI S H, LI J, WANG X N, et al. Water quality criteria and risk assessment of bisphenol A in Taihu Lake[J]. Research of Environmental Sciences, 2020, 33(3): 581-588. [百度学术]
TANG Y, HAN Y, ZHANG W X, et al. Bisphenol A and microplastics weaken the antimicrobial ability of blood clams by disrupting humoral immune responses and suppressing hemocyte chemotactic activity[J]. Environmental Pollution: Barking, Essex: 1987, 2022, 307: 119497. [百度学术]
FENG J J, XU L G, CUI G, et al. Building SERS-active heteroassemblies for ultrasensitive bisphenol A detection[J]. Biosensors and Bioelectronics, 2016, 81: 138-142. [百度学术]
HU B X, PU H B, SUN D W. Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection[J]. Trends in Food Science & Technology, 2021, 110: 304-320. [百度学术]
PANNEERSELVAM R, SADAT H, HÖHN E M, et al. Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination? [J]. Lab on a Chip, 2022, 22(4): 665-682. [百度学术]
YASEEN T, PU H B, SUN D W. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: A review of recent research trends[J]. Trends in Food Science & Technology, 2018, 72: 162-174. [百度学术]
HAO Q, PENG Z H, WANG J W, et al. Verification and analysis of single-molecule SERS events via polarization-selective Raman measurement[J]. Analytical Chemistry, 2022, 94(2): 1046-1051. [百度学术]
DING S Y, YOU E M, TIAN Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chemical Society Reviews, 2017, 46(13): 4042-4076. [百度学术]
MOSIER-BOSS P A. Review of SERS substrates for chemical sensing[J]. Nanomaterials: Basel, Switzerland, 2017, 7(6): 142. [百度学术]
CHEN H J, KOU X S, YANG Z, et al. Shape- and size-dependent refractive index sensitivity of gold nanoparticles[J]. Langmuir, 2008, 24(10): 5233-5237. [百度学术]
WILEY B, SUN Y G, XIA Y N. Synthesis of silver nanostructures with controlled shapes and properties[J]. Accounts of Chemical Research, 2007, 40(10): 1067-1076. [百度学术]
GE M H, LI P, ZHOU G L, et al. General surface-enhanced Raman spectroscopy method for actively capturing target molecules in small gaps[J]. Journal of the American Chemical Society, 2021, 143(20): 7769-7776. [百度学术]
PÉREZ-JIMÉNEZ A I, LYU D Y, LU Z X, et al. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments[J]. Chemical Science, 2020, 11(18): 4563-4577. [百度学术]
汪仕韬. 表面增强拉曼光谱法检测双酚A的研究[D]. 无锡: 江南大学, 2010. [百度学术]
WANG S T. Detection of BPA by surface-enhanced Raman scattering[D]. Wuxi: Jiangnan University, 2010. [百度学术]
YANG L B, CHEN Y L, SHEN Y, et al. SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol A residues in milk[J]. Talanta, 2018, 179: 37-42. [百度学术]
ZHANG L, ZHOU L H, JI W J, et al. Cysteamine-assisted highly sensitive detection of bisphenol A in water samples by surface-enhanced Raman spectroscopy with Ag nanoparticle-modified filter paper as substrate[J]. Food Analytical Methods, 2017, 10(6): 1940-1947. [百度学术]
张磊. SERS及其结合免疫技术检测双酚A和丙肝抗体的方法建立与评价[D]. 广州: 广东工业大学, 2017. [百度学术]
ZHANG L. Establishment and evaluation of analysis methods for BPA and HCV-ab based on SERS and its combination with immunoassays[D]. Guangzhou: Guangdong University of Technology, 2017. [百度学术]
XU Z, WANG R, MEI B, et al. A surface-enhanced Raman scattering active core/shell structure based on enzyme-guided crystal growth for bisphenol A detection[J]. Analytical Methods, 2018, 10(31): 3878-3883. [百度学术]
WANG C Y, ZENG Y, SHEN A G, et al. A highly sensitive SERS probe for bisphenol A detection based on functionalized Au@Ag nanoparticles[J]. Analytical Methods, 2018, 10(47): 5622-5628. [百度学术]
冯敬敬. 拉曼光谱在食品包装和生物污染物快速检测中的应用[D]. 无锡: 江南大学, 2019. [百度学术]
FENG J J. Application of Raman spectroscopy in the rapid detection of food packaging and biological contaminants[D]. Wuxi: Jiangnan University, 2019. [百度学术]
赵浩暖. 多枝状纳米金的制备及在食品安全SERS检测中的应用[D]. 泰安: 山东农业大学, 2020. [百度学术]
ZHAO H N. Preparation of multi-branch gold nanoparticles and its application in SERS detection of food safety[D]. Taian: Shandong Agricultural University, 2020. [百度学术]
冯敬敬, 杨军, 刘新梅, 等. 一种基于拉曼静默区SERS成像快速检测食品及环境中双酚A的方法: CN114689561A[P]. 2022-07-01. [百度学术]
FENG J J, YANG J ,LIU X M, et al. A method for rapid detection of bisphenol A in food and environment based on SERS imaging in Raman silent zone: CN114689561A[P]. 2022-07-01. [百度学术]
QIU L, LIU Q, ZENG X L, et al. Sensitive detection of bisphenol A by coupling solid phase microextraction based on monolayer graphene-coated Ag nanoparticles on Si fibers to surface enhanced Raman spectroscopy[J]. Talanta, 2018, 187: 13-18. [百度学术]
ZHANG L, CHEN Y S, ZHU Q, et al. SERS based immunochromatographic assay for rapid and quantitative determination of bisphenol A[J]. Vibrational Spectroscopy, 2021, 113: 103225. [百度学术]
LEI Z, CHEN Y S, LIU Z W, et al. A highly sensitive and quantitative detection method for bisphenol A (BPA) by competitive immunoassay based on surface-enhanced Raman spectroscopy[J]. Pigment & Resin Technology, 2018, 47(1): 38-46. [百度学术]
YIN W M, WU L, DING F, et al. Surface-imprinted SiO2@Ag nanoparticles for the selective detection of BPA using surface enhanced Raman scattering[J]. Sensors and Actuators B: Chemical, 2018, 258: 566-573. [百度学术]