摘要
针对小麦及小麦粉中脱氧雪腐镰刀菌烯醇(DON)、黄曲霉毒素(AFs)、玉米赤霉烯酮(ZEN)、雪腐镰刀菌烯醇(NIV)、T-2毒素(T2)、HT-2毒素(HT2)、赭曲霉毒素A(OTA)、伏马菌素(FBs)、交链孢酚(AOH)、交链孢酚单甲醚(AME)、腾毒素(TEN)及交链孢菌酮酸(TeA)等真菌毒素的全球污染情况进行Meta分析。
通过文献筛选,共纳入69篇文献22 308个样本。小麦及小麦粉中以上真菌毒素的全球总体污染率为58%(95%CI:51%~66%),其中,TeA为99%、TEN为88%、DON为85%、AFs为57%、ZEN为42%、T2为39%、AOH为30%、AME为29%、NIV为28%、HT2为25%、OTA为21%及FBs为16%;小麦及小麦粉中真菌毒素的全球总体污染水平为32.80 μg/kg(95%CI:24.96~43.10 μg/kg),DON在小麦及小麦粉中的含量最高,为317.53 μg/kg,其次为TeA 117.37 μg/kg及FBs 45.09 μg/kg。DON-ZEN组合的污染率分别为11.0%、14.0%及26.7%,TeA-TEN组合为16.2%,TeA-TEN-AME组合为14.3%和TeA-TEN-AOH-AME组合为19.5%。
真菌毒素是真菌产生的低分子量次级代谢产物(主要有曲霉菌属、镰刀菌属、青霉菌属及交链孢菌属)。真菌毒素的摄入可对人和动物产生各种急性和慢性影响,如肝肾毒性、遗传毒性、免疫抑制性、雌激素毒性、致癌性或致畸
鉴于生产管理(储存、收获、加工条件和耕作)、地理因素和天气状况(降雨、湿度和温度)等环境因素均可对真菌毒素污染谱和污染水平产生重要的影
本研究根据Cochrane协作手册进行系统评
文献中的数据由一位作者提取并由另一位作者检查,提取的信息包括第一作者、发表年份、食物类型、真菌毒素的类别、样本总数、阳性样本数、真菌毒素污染水平的均值或中位数、标准差、真菌毒素的检测方法、检测限、定量限、国家/地区。
对小麦中真菌毒素污染率和污染水平进行量化,并使用Meta分析估计相应的95%置信区间(Confidence interval,CI)。采用DerSimonian-Laird的随机效应分析模型估计了总体污染率和总体污染水平。在R软件4.1.0版本中进行Meta分
本研究在PubMed(n=2 263)、Web of Science(n=3 550)、知网(n=294)及万方(n=305)数据库共检索到6 412篇文献,去重后剩余4 998篇文献。根据标题进行初步筛选,排除4 845篇研究内容与本研究不相关的文献后,对其余符合本研究的153篇文献下载全文并阅读全文,最终将69篇文献的结果纳入Meta分析(

图 1 文献筛选流程图
Figure 1 Flow diagram of article selection process
本研究共筛选出69篇文献,发表于2010年8月至2021年11月,小麦原粮57篇,小麦粉12篇,样本量为22 308。其中,44.93%(31/69)来自亚洲,包括中国(21篇)及巴基斯坦、马来西亚、韩国等8个中国以外亚洲国家(共10篇);33.33%(23/69)来自欧洲,包括西班牙、意大利、波兰、塞尔维亚、丹麦等10个国家;14.49%(10/69)来自美洲,包括巴西、加拿大、美国、阿根廷和荷兰;7.25%(5/69)来自非洲,包括突尼斯、摩洛哥、阿尔及利亚等5个国家或地区。如

图 2 2010—2021年小麦及小麦粉中真菌毒素污染相关研究的年度文献情况
Figure 2 Variation numbers of articles and studies on mycotoxins in wheat and wheat-based products from 2010 to 2021
注: 研究数量指文献中包含的研究数
如

图 3 小麦及小麦粉中真菌毒素污染相关研究的文献及研究数量比较
Figure 3 The number of articles and studies in wheat and wheat-based products based on the type of mycotoxins
对全球范围内小麦及小麦粉中真菌毒素的污染情况进行分析,结果如
对不同国家或地区进行Meta亚组分析的结果显示,小麦及小麦粉中真菌毒素的污染率见

图 4 全球不同区域小麦及小麦粉中真菌毒素的污染率及污染水平随机效应Meta分析森林图
Figure 4 Forest plot for random-effects Meta-analysis of estimated pooled prevalence and concentration of each mycotoxin in wheat and wheat-based products in different regions of the world
注: *:中国以外的亚洲地区
本研究筛选出的文献中共有20篇文献表明小麦及小麦粉中真菌毒素存在联合污染现象,见
本研究对全球区域范围内小麦及小麦粉中真菌毒素的污染情况进行了Meta分析。研究表明,小麦及小麦粉中真菌毒素的全球总体污染率为58%,其中以TeA的污染率最高,其次为TEN及DON;总体污染水平为32.80 μg/kg,其中,DON的污染水平为317.53 μg/kg,其次为TeA 117.37 μg/kg,可见DON与TeA在小麦及小麦粉中污染率及污染水平均较高。对不同国家或区域进行亚组分析的结果表明小麦作物在不同国家或地区表现出不同的真菌毒素污染特征,而气候条件等环境因素的差异对真菌毒素在作物生长和作物贮藏期间的污染产生显著影响。GRUBER
本研究针对真菌毒素的联合污染情况进行系统综述,一种以上真菌毒素共污染率较高。BIOMIN公司针对2019年小麦、玉米、稻谷及大麦等谷类原粮中超过380种真菌毒素的共污染情况进行全球分析,结果显示,全球范围内87%样本中含有10种及以上真菌毒素及其代谢物,平均每个样本中有30种真菌毒素及其代谢
本研究纳入的是近10年发表的文献,涉及28个国家或地区,且文献中真菌毒素的检测方法及检出限的不同,可能会导致得出的污染率及污染水平存在较大的异质性。且涉及AFs、FBs及交链孢毒素的文献仅5~8篇,因此样本量的不足可能导致数据不能真实反映这几种真菌毒素的污染情况。关于真菌毒素联合污染情况,由于受文献数量的影响,可能会导致结果具有一定的偏倚。
参考文献
GRUBER-DORNINGER C, NOVAK B, NAGL V, et al. Emerging mycotoxins: Beyond traditionally determined food contaminants[J]. Journal of Agricultural and Food Chemistry, 2017, 65(33): 7052-7070. [百度学术]
PALUMBO R, CRISCI A, VENÂNCIO A, et al. Occurrence and co-occurrence of mycotoxins in cereal-based feed and food[J]. Microorganisms, 2020, 8(1): 74. [百度学术]
MARIN S, RAMOS A J, CANO-SANCHO G, et al. Mycotoxins: Occurrence, toxicology, and exposure assessment[J]. Food and Chemical Toxicology, 2013, 60: 218-237. [百度学术]
FAO. FAOSTAT[DB/OL]. 2021-12-09. https://www.fao.org/faostat/en/#home. [百度学术]
PITT J I, TANIWAKI M H, COLE M B. Mycotoxin production in major crops as influenced by growing, harvesting, storage and processing, with emphasis on the achievement of Food Safety Objectives [J]. Food Control, 2013, 32(1): 205-215. [百度学术]
SANTOS PEREIRA C, C CUNHA S, FERNANDES J O. Prevalent mycotoxins in animal feed: Occurrence and analytical methods [J]. Toxins, 2019, 11(5): 290. [百度学术]
EFSA PANEL ON CONTAMINANTS IN THE FOOD CHAIN (CONTAM). Scientific Opinion on the risks for animal and public health related to the presence of alternaria toxins in feed and food [J]. EFSA Journal, 2011, 9(10): 2407. [百度学术]
MAHDJOUBI C K, ARROYO-MANZANARES N, HAMINI-KADAR N, et al. Multi-mycotoxin occurrence and exposure assessment approach in foodstuffs from Algeria[J]. Toxins, 2020, 12(3): 194. [百度学术]
BRYŁA M, WAŚKIEWICZ A, PODOLSKA G, et al. Occurrence of 26 mycotoxins in the grain of cereals cultivated in Poland [J]. Toxins, 2016, 8(6): 160. [百度学术]
BLESA J, MOLTÓ J C, EL AKHDARI S, et al. Simultaneous determination of Fusarium mycotoxins in wheat grain from Morocco by liquid chromatography coupled to triple quadrupole mass spectrometry [J]. Food Control, 2014, 46: 1-5. [百度学术]
SHI H T, SCHWAB W, YU P Q. Natural occurrence and co-contamination of twelve mycotoxins in industry-submitted cool-season cereal grains grown under a low heat unit climate condition[J]. Toxins, 2019, 11(3): 160. [百度学术]
ZHANG Y Y, PEI F, FANG Y, et al. Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC [J]. Food Chemistry, 2019, 275: 763-769. [百度学术]
REYNERI A. The role of climatic condition on micotoxin production in cereal[J]. Veterinary Research Communications, 2006, 30(1): 87-92. [百度学术]
HIGGINS J P T, THOMAS J, CHANDLER J, et al. Cochrane handbook for systematic reviews of interventions version 6.2[Z/OL]. 2021. http://www.training.cochrane.org/handbook. [百度学术]
R CORE TEAM. R: A language and environment for statistical computing. R foundation for statistical computing[Z/OL]. Vienna, Austria, 2021. https://www.R-project.org/. [百度学术]
BALDUZZI S, RÜCKER G, SCHWARZER G. How to perform a meta-analysis with R: A practical tutorial[J]. Evidence-Based Mental Health, 2019, 22(4): 153-160. [百度学术]
HIGGINS J P T, THOMPSON S G, DEEKS J J, et al. Measuring inconsistency in meta-analyses[J]. BMJ: Clinical Research Ed, 2003, 327(7414): 557-560. [百度学术]
SPINELI L M, PANDIS N. Meta-analysis: random-effects model[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2020, 157(2): 280-282. [百度学术]
XU W J, HAN X M, LI F Q. Co-occurrence of multi-mycotoxins in wheat grains harvested in Anhui Province, China[J]. Food Control, 2019, 96: 180-185. [百度学术]
JUAN C, COVARELLI L, BECCARI G, et al. Simultaneous analysis of twenty-six mycotoxins in durum wheat grain from Italy[J]. Food Control, 2016, 62: 322-329. [百度学术]
JANIĆ HAJNAL E, ORČIĆ D, TORBICA A, et al. Alternaria toxins in wheat from the Autonomous Province of Vojvodina, Serbia: A preliminary survey[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2015, 32(3): 361-370. [百度学术]
CALORI-DOMINGUES M A, BERNARDI C M G, NARDIN M S, et al. Co-occurrence and distribution of deoxynivalenol, nivalenol and Zearalenone in wheat from Brazil[J]. Food Additives & Contaminants: Part B, 2016, 9(2): 142-151. [百度学术]
何玲, 秦忠雪, 任琳, 等. 2018年四川省小麦中真菌毒素污染调查[J]. 现代预防医学, 2020, 47(8): 1502-1504, 1523. [百度学术]
HE L, QIN Z X, REN L, et al. Investigation on contamination of mycotoxins in wheat from Sichuan in 2018[J]. Modern Preventive Medicine, 2020, 47(8): 1502-1504, 1523. [百度学术]
XU W J, HAN X M, LI F Q, et al. Natural occurrence of Alternaria toxins in the 2015 wheat from Anhui province, China[J]. Toxins, 2016, 8(11): 308. [百度学术]
GRUBER-DORNINGER C, JENKINS T, SCHATZMAYR G. Global mycotoxin occurrence in feed: A ten-year survey[J]. Toxins, 2019, 11(7): 375. [百度学术]
KHARBIKAR L L, DICKIN E T, EDWARDS S G. Impact of post-anthesis rainfall, fungicide and harvesting time on the concentration of deoxynivalenol and Zearalenone in wheat[J]. Food Additives & Contaminants: Part A, 2015, 32(12): 2075-2085. [百度学术]
BIOMIN. Mycotoxin survey[Z/OL]. (2022-01-23) [2022-04-18]. https://www.dsm.com/anh/products-and-services/tools/mycotoxin-contamination/biomin-mycotoxin-survey.html. [百度学术]