- isothermal amplification (LAMP) [J]. Parasitol Res, 2010, 106 (6):1379-1383.
- [34] QU D, ZHOU H, HAN J, et al. Development of reverse transcription loop-mediated isothermal amplification (RT-LAMP) as a diagnostic tool of *Toxoplasma gondii* in pork [J]. Vet Parasitol, 2013, 192 (1-3):98-103.
- [35] LI X, LIU W, WANG J, et a. Rapid detection of Trichinella spiralis larvae in muscles by loop-mediated isothermal amplification [J]. Int J Parasitol, 2012, 42 (13-14):1119-1126.
- [36] CHANG J C, Hilsenbeck S G, Fuqua S A. Genomic approaches in the management and treatment of breast cancer [J]. Br J Cancer, 2005, 92(4):618-624.
- [37] 张媛,童睿,郑秋月,等.运用基因芯片技术检测三种寄生虫方法的研究[J].中国卫生检验杂志,2007,17(12):2168-2170.
- [38] 杨朋欣,张子群,路义鑫,等.食品中弓形虫和旋毛虫液相基因芯片检测方法的研究[J].中国预防兽医学报,2010,32(10):777-780.
- [39] WANG Z, Vora G J, Stenger D A. Detection and genotyping of Entamoeba histolyaca, Entamoeba dispar, Giarclla lamblia, and

- Cryptosporidium parvum by oligonucleotide microarray [J]. J Clin Microbiol, 2004, 42(7); 3262-3271.
- [40] Brinkman N E, Francisco R, Nichols T L, et al. Detection of multiple waterborne pathogens using microsequencing arrays[J]. J Appl Microbiol, 2013, 114(2):564-73.
- [41] Patrascu I, Gamble H R, Sofronic-Milosavljevic L, et al. The lateral flow card test:: an alternative method for the detection of *Trichinella* infection in swine [J]. Parasite, 2001, 8 (2 Suppl): S240-242.
- [42] 崔晶,何永康,来利红,等.免疫层析试纸条检测实验感染猪肉汁 抗旋毛虫抗体的研究[J].热带病与寄生虫学,2008,6(1):8-10.
- [43] Thiruppathiraja C, Kamatchiammal S, Adaikkappan P, et al. An advanced dual labeled gold nanoparticles probe to detect Cryptosporidium parvum using rapid immuno-dot blot assay [J]. Biosens Bioelectron, 2011, 26(11):4624-4627.
- [44] XU X, SUI J, CAO L, et al. Direct competitive enzyme-linked immunosorbent assay (ELISA) for rapid screening of anisakid larvae in seafood[J]. J Sci Food Agric, 2010, 90(5):877-881.

综述

我国母乳中持久性有机污染暴露水平及主要来源研究

黄志1,胡余明2,朱明元1

(1. 中南大学公共卫生学院,湖南长沙 410078; 2. 湖南省疾病预防与控制中心,湖南长沙 410005)

摘 要:本文介绍了我国母乳中有机氯农药(OCPs)、二噁英(PCDD/Fs)、多氯联苯(PCBs)、多溴联苯醚(PBDEs)、全氟代烃类化合物(PFCs)等持久性有机污染物(POPs)的污染状况及可能的暴露来源。持久性有机污染物在我国母乳中存在一定的身体负荷,可能对婴儿的健康产生不利影响。

关键词:持久性有机污染物;母乳;污染;暴露;有机氯农药;二噁英;多氯联苯;多溴联苯醚;全氟代烃类化合物

中图分类号:R15;R174.4 文献标志码:A 文章编号:1004-8456(2014)01-0100-05

The level and source of persistent organic pollutants in breast milk of China; a review

HUANG Zhi, HU Yu-ming, ZHU Ming-yuan

(Public Health School of Central South University, Hunan Changsha, 410078, China)

Abstract: The purpose of this study is to introduce the current situation of pollution and possible exposure mechanism of POPs including organochlorine pesticides, dioxin, polychlorinated biphenyls, polybrominated dipheny-lethers, and perfluorinated generation of hydrocarbons, in breast milk of China. Persistent organic pollutants in breast milk have certain load in China, which may have adverse influence on infant's health.

Key words: Persistent organic pollutants; breast milk; pollution; exposure; organochlorine pesticides; dioxins; polychlorinated biphenyls; polybrominated diphenyl-lethers; perfluorinated hydrocarbons

持久性有机污染物(persistent organic pollutants, POPs)是指人类合成的能持久存在于环境中、通过生 物食物链(网)累积、并对人类健康造成有害影响的 化学物质。持久性有机污染物主要来源于农药、阻燃 剂、电子设备、家具或是废物焚烧后的副产物[1]。近 些年,随着我国工农业的快速发展和人口的快速增 长,化学性农药和化肥的使用增加,POPs 污染已经普 遍存在于我国的环境中。人体可以通过食物摄入、空 气吸入、皮肤吸收、职业暴露、母婴传播等方式暴露于 POPs^[1]。食物是人体 POPs 的主要暴露来源,并可以 反应人体的暴露程度,然而食物种类繁多,消耗量各 不相同,通过测定食物中持久性有机污染物的水平来 反映人体的负荷存在很多不确定因素。母乳是婴儿 最理想的天然食品,脂肪含量丰富,且易于收集,无损 伤性;母乳中的 POPs 水平既能够反应母亲和婴儿的 暴露水平,又能够反映当地环境中污染物的水平和时 间趋势。因而母乳是监测人体 POPs 水平的有利基 质。本文收集近几年我国母乳中 POPs 的研究资料, 介绍我国母乳中 POPs 的污染水平、污染种类、污染来 源,为进一步研究母乳中的 POPs 提供参考。

1 母乳中 POPs 污染现况

1.1 有机氯农药(OCPs)

OCPs 是用于防治植物病虫害的有机化合物,其 成分中含有有机氯元素,主要分为以苯为原料和以 环戊二烯为原料的两大类。自从20世纪70年代初 期,大部分发达国家就禁止使用有机氯农药,但许 多发展中国家仍在使用[2]。研究证明,滴滴涕 (DDT)和六六六(HCH)等有机氯农药,可对人体产 生一定的身体负荷。我国全国性母乳调查发现(见 表 1), 母乳中 DDTs, HCHs 的平均水平分别为 527.2 和 231.8 ng/g^[3]。农村有机氯农药的污染较 城市更为严重。上海、广东、浙江等沿海发达省份 母乳 OCPs 的污染较全国水平更为严重。上海地区 母乳中 HCHs 的污染最为突出[4-6]。1989、1998、 2002 年北京地区母乳中 DDTs 的平均水平分别为 5 700、2 040、和 730 ng/g, HCHs 的平均水平分别为 4 250、1 180、和 230 ng/g,提示 DDTs 在我国母乳中 浓度呈下降趋势[7]。母乳中 OCPs 以 DDTs 为最高, HCHs 次之。而 DDTs 则以 p-p' DDE(p-p'滴滴伊) 为主, HCHs 以 β -CHs (β -六六六) 为主^[3]。与其他 国家相比,我国母乳中 DDTs 的全国性水平与俄罗 斯相当,比印度、伊朗、马来西亚等发展中国家低, 但比德国、挪威、比利时等发达国家水平高得多。 HCHs 水平与马来西亚、印度等国相似,比伊朗、俄 罗斯等国低,但比德国、比利时等国高[3]。

母乳中 DDTs 的同系物中以 p-p'DDE、p-p'DDT

表 1 不同地区母乳中 OCPs 的污染水平(ng/g lipid)
Table 1 The level of OCPs in breast milk of different regions

Table	1 1110	c level of o	ars in bicast iii.	ik of differe	int regions
地区		样本量	抽样时间	DDT	НСН
中国	全国	1 237	2007	527. 2	231.8
	农村	667	2007	539. 3	197. 9
	城市	570	2007	629. 2	265.6
	北京	64	1989	5 700.0	4 250.0
		60	1998	2 040.0	1 180.0
		98	2002	730.0	230.0
	上海	372	2002	1 594.0	2 202.0
	浙江	16	2003—2005	1 087.6	213.4
	广东	30	2004	2 114.6	54.7
德国		4 314	1999—2006	113.0	20.0
挪威		423	2002—2006	53.0	5.4
马来国	西亚	17	2003	1 600.0	230.0
俄罗斯	折	35	2003—2004	660.0	810.0
印度		21	2005—2006	1 500.0	340.0
比利田	付	197	2006	156. 3	12.7
伊朗		57	2006	2 554.0	3 780.0

为主。p-p'DDE 是 p-p'DDT 主要的代谢产物。p-p'DDE与p-p'DDT 的比值可提示母乳中 p-p'DDT 的来源,比值低,提示近期有 p-p'DDT 的暴露;比值高,提示早期有 p-p'DDT 的暴露。在全国性的母乳调查中,母乳 p-p'DDE 与 p-p'DDT 的比值较高,p-p'DDT比值高,提示我国母乳 DDTs 的污染主要来源于 DDTs 的早期使用,特别是农业生产中有机氯农药的使用^[3]。对广州^[5]和北京^[8]的母乳研究也发现,p-p'DDE 与 p-p'DDT 的比值很高,说明这些地区 DDTs 污染也源于早期 DDTs 的使用。但也有研究报道,福建农村地区^[3]和最近从我国大陆移民到香港的哺乳期女性^[9],母乳中 p-p'DDE 与 p-p'DDT 的比值较低,这提示福建农村地区和从大陆移民香港的哺乳期女性近期有 DDTs 的暴露。

膳食摄入是 DDTs 污染母乳的主要途径,动物性食物,尤其是鱼类摄入越多,母乳中 DDTs 水平越高。全国性母乳调查中发现,母乳中 DDTs 的水平与动物性食品消耗呈正相关^[3]。母亲的年龄也会影响母乳中 DDTs 的水平,母亲的年龄越大母乳中DDTs 的水平越高^[5]。母乳中 HCHs 的来源则与工业生产有关,工业生产导致大气中较高水平的HCHs,母亲通过空气吸入从而污染母乳,引起母乳中较高水平的 HCHs 水平的另一重要途径,周萍萍等人^[3]研究发现,母乳中的 HCHs 水平与海产品的消耗呈正相关。

OCPs 挥发性小,脂溶性强,结构稳定,在生物体内消失缓慢,可通过食物链,在人体脂肪、母乳等富含脂肪的组织蓄积。人类是处于食物链的顶端,人体可能通过食用高脂动物性食品而在体内富集高浓度的OCPs,特别是人乳中的OCPs可通过乳汁传递给下一代,婴幼儿有可能暴露于母乳中相对高浓度的OCPs。

长期慢性的暴露,可引起慢性毒性,其慢性毒理作用主 要是影响神经系统和侵害肝脏,可引起肌肉震颤,肝肿 大、肝细胞变性和中枢神经系统疾病。近些年的研究 表明,OCPs 在动物体内的代谢产物具有性激素样的作 用,影响动物体正常生理活动,有环境激素之称[10]。

1.2 二噁英(PCDD/Fs)和多氯联苯(PCBs)

PCDD/Fs 指多氯二苯并-对-二噁英(PCDDs)和 多氯二苯并呋喃(PCDFs)。其污染主要来源于化工 冶金工业、垃圾焚烧、造纸以及杀虫剂的生产。大 气环境中的 PCDD/Fs 90% 来源于城市和工业垃圾 焚烧。PCBs 由 209 种不同的化学物组成,广泛应用 于绝缘材料、喷漆、无碳打印纸、农药等生产中。在 工业化发达的国家, PCBs 大量生产, 使环境受到 PCBs 污染,人体通过皮肤、空气吸入、膳食暴露于 PCBs,再经过体内生物转化,使母乳受到严重的有 机氯污染,欧洲和北美地区母乳 PCBs 的水平远高 于非工业化国家的水平。由表2可知,我国全国性 母乳调查中母乳 PCDD/Fs 的剂量当量为 3.73 pg WHO-TEQ/g, PCBs 的剂量当量为 1.69 pg WHO-TEO/g[11]。电子废物处理地区母乳中 PCDD/Fs 和 PCBs 的污染最严重,剂量当量分别为 21.02 和 59.00 pg WHO-TEQ/g^[12-13]。河北和山东^[14]地区 母乳中 PCDD/Fs 和 PCBs 的污染与全国水平相当, 天津[14]和广东[15]地区母乳污染较全国水平高。浙 江农村地区母乳中 PCDD/Fs、PCBs 污染较城市 轻[16]。与其他国家和地区相比,除电子废物处理地 区外,我国大陆地区母乳中 PCDD/Fs、PCBs 的污染 较我国台湾和香港轻,与日本、俄罗斯、德国等发达 国家相比较轻[11]。

表 2 不同地区母乳中 PCDD/Fs 和 PCBs 的 污染水平(pg WHO-TEQ/g lipid)

Table 2 The level of PCDD/Fs and PCBs in breast milk

of different regions

地区			样本量	抽样时间	PCDD/Fs	PCBs
中国	全国		1 237	2007	3. 73	1. 69
	电子特	勿处理区	12	2001		59.00
			10	2005	21.02	_
	天津		50	2006-2007	5.08	3.11
	山东		60	2006-2007	3.58	2.46
	河北		48	2006-2007	3.95	2. 29
	广东		60	2007	6. 43	4. 35
	浙江	农村	51	2008	2. 27	1.83
		城市	23	2008	3.90	2.66
	台湾		20	2000-2001	7.62	5.91
	香港		316	2001-2002	8. 25	4. 67
日本			20	2002	16.90	6.48
俄罗其	fr		14	2002	10.00	19.00
德国			42	2005	9. 91	9.88

注:一表示该指标未知

我国母乳中 PCDD/Fs 和 PCBs 的污染主要来源于 工业污染,尤其是电子废物的处理过程。我国电子废 物处理地区母乳中 PCDD/Fs、PCBs 的水平远远高于非 电子废物处理区,甚至比工业化发达国家的水平还 高[12]。膳食暴露是母乳 PCDD/Fs、PCBs 主要的暴露 途径。沈海涛等[16]对浙江地区母乳的研究发现,母乳 中 PCDD/Fs、PCBs 异构体的组成与膳食中异构体的组 成相似,提示食物摄入是母乳 PCDD/Fs、PCBs 暴露的 主要途径。动物性食物,尤其是鱼类食物的摄入越多, 母乳中 PCDD/Fs、PCBs 的含量越高。而淡水鱼的摄入 更易引起母乳中 PCDD/Fs 的升高。堎俊红等[17] 对我 国沿海城市母乳中持久性有机物的研究发现,母乳中 PCDD/Fs、PCBs 的水平与鱼类、肉类的消耗有关。天津 地区母乳中 PCDD/Fs 水平高于烟台,这可能是因为淡 水鱼类高摄入人群比低摄入人群母乳中 PCDD/Fs 水 平高,而天津地区摄入淡水鱼较多,烟台地区摄入海水 鱼较多。乳母生活地区五氯酚钠的使用,也是母乳中 PCDD/Fs 暴露的重要来源。肖克等[18]研究发现,洞庭 湖地区母乳中 PCDD/Fs 同分异构体的组成与五氯酚 钠中 PCDD/Fs 同分异构的组成相似,而与我国其他无 五氯酚钠使用地区母乳中组成不同,提示洞庭湖地区 PCDD/Fs 的暴露主要来源于五氯酚的使用。

PCDD/Fs、PCBs 在人体组织内蓄积可产生急性 致死毒性、皮肤毒性、致癌作用、内分泌干扰毒性、生 殖毒性、发育毒性、致畸性、免疫毒性、肝毒性等毒性 作用。其中最主要的危害是内分泌干扰毒性,其具有 明显的抗雌激素和甲状腺毒性作用。PCDD/Fs、PCBs 对动物有极强的致癌性,国际癌症组织已于 1997 年 将 PCBs、PCDFs 定为三级致癌物。母乳是 PCDD/Fs、 PCBs 传递给婴儿的最主要方式,对婴幼儿生长发育 及神经系统发育有着极严重的不利影响。

1.3 多溴联苯醚(PBDEs)

PBDEs 作为一种阻燃剂被广泛应用于电子设备、 纺织品中,它的使用至今仍未受到限制。研究发现美 国女性母乳中 PBDEs 的水平是欧洲女性的 10~ 100 倍[19],其在母乳中的水平呈逐步上升趋势。由表 3 可知,我国女性母乳中 PBDEs 的浓度全国性水平为 1.49 ng/g^[20]。江苏^[21]、上海^[22]、广东^[23]等南方沿海省 份母乳中 PBDEs 的污染较北京^[24]、天津、山东、河北^[14] 等北方省份更为严重。母乳中 PBDEs 的同系物以 BDE(溴苯醚) -28、-47、-153 为主。与其他国家相比,我 国母乳中 PBDEs 水平与德国、比利时、日本等国污染水 平相当,比美国污染轻,但与越南相比污染更严重[20]。

母乳中的 PBDEs 水平与工业污染有关。我国电 子废物处理地区母乳中 PBDEs 水平高于其他地区, 且人群 PBDEs 负荷高,原因在于持续摄入受污染的 食物和水,吸入受污染的空气,或皮肤直接接触污染 物。张建刚等[23] 对深圳母乳中 PBDEs 的研究发现,

表 3 不同地区母乳中 PBDEs 的污染水平(ng/g lipid)

Table 3 The level of PBDEs in breast milk of different regions

			_
地区	样本量	抽样时间	PBDEs
中国 全国	1 237	2007	1.49
江苏	19	2004	6. 10
天津	50	2006—2007	3.42
河北	48	2006—2007	3.71
山东	60	2006—2007	4. 16
上海	48	2006—2007	8.81
广东	60	2007	14. 75
北京	_	2007	1.48
德国	89	2001—2004	1.72
比利时	197	2006	2.01
美国	29	2007	27. 80
越南	20	2007	0.42
日本	60	2007	1.50

注:一表示该指标未知

该地区母乳中 PBDEs 水平远高于我国其他地区,主要原因与深圳近几年电子产业的飞速发展,PBDEs 污染较重有关。金军等^[25] 对我国电子废物处理地的山东菜州地区母乳中 PBDEs 的研究也发现,母乳中有很高水平的 PBDEs。母乳中 PBDEs 存在多种暴露途径,膳食摄入是低分子量 BDE 的主要来源,高分子量的 BDE 通过空气吸入暴露。我国电子废物处理地区母乳中低分子量的 BDE-47 在 PBDEs 中占的比例最高,提示膳食摄入是 BDE-47 暴露的主要来源。同时还发现母乳、空气中高分子量的 BDE 占的比例也很高,这提示高分子量的 BDE 通过空气吸入暴露^[23]。马申涛等^[26] 对上海母乳的研究发现,母乳中高分子量 BDE 水平在办公室工作人员和家庭主妇间有差别。空气和粉尘吸入可能是高分子量 BDE 暴露的主要途径。

PBDEs 在结构上与 PCBs 存在相似性,因而化学性质也相似,但 PBDEs 在环境中容易被降解。毒理学研究发现,部分 PBDEs 同系物可造成啮齿类动物(大、小鼠)的学习和运动能力损害,且具有肝脏毒性、内分泌干扰作用和生殖毒性,尤其是内分泌干扰作用。有报道称,PBDEs 的水平达到 800 ppb时,penta-BDE(五溴二苯醚)就会对甲状腺产生抑制,阻碍大脑的早期发育^[27]。

1.4 全氟代烃类化合物(PFCs)

PFCs 自 1950 年被生产以来,被广泛应用于工业和日常生活用品生产。全氟辛烷磺酸(PFSO)和全氟辛酸(PFOA),在人体和环境中的持久性令人担忧。PFSO 的前体和其相关的化合物作为防水防油涂料,被广泛用于毛毯、纺织品、表面活性剂的清洗剂和化妆品等。PFOA 及某铝盐是含氟聚合物加工过程中不可缺少的辅助剂。我国母乳中 PFCs 以PFOA 和 PFSO 为主,其全国的平均水平分别为 35.4 和 49.0 pg/ml,见表 4。上海地区母乳中 PFOA 污染

最为严重,宁夏母乳中 PFCs 的污染水平最低。与其他国家相比,我国母乳中 PFOS 的水平与日本相当,但远低于美国、德国、印度。 PFOA 除个别地区外,与世界各国相比污染较轻^[28]。

表 4 不同地区母乳中 PFCs 的污染水平(pg/ml)

Table 4 The level of PFCs in breast milk of different regions

地区		样本量	抽样时间	PFOS	PFOA
中国	全国	1 237	2007	49. 0	34. 5
	宁夏	50	2007	16.0	< LOD
	黑龙江	50	2007	40.0	37.0
	广西	50	2007	79. 0	22.0
	上海	50	2007	74. 0	616.0
美国		45	2004	131.0	43.8
德国		70	2006	158. 0	77.4
日本		_	2007	39. 4	77.7
印度		_	2007	196. 0	_

注:一表示该指标未知

母乳中 PFCs 受工业和经济发展水平的影响明显。在我国 12 省母乳 PFCs 的研究中,经济和工业发达的上海地区母乳中有很高浓度的 PFOA,而欠发达的宁夏地区母乳中 PFCs 的水平最低^[28]。母乳中 PFCs 与母亲血液中 PFCs 有关。刘佳颖等^[29]在我国京沪地区母乳中检测出 5 种 PFCs 化合物,母乳中 PFCs 与母亲血液中 PFCs 存在相互关联。其中 PFOA 的分配系数(母乳与血液中 PFOA 的比值)很高,说明 PFOA 通过哺乳有很高的转运效率。

PFSO和 PFOA 毒性的研究主要集中于啮齿动物,而 PFC 暴露相关的流行病学研究很少。动物试验研究发现,啮齿类动物 PFCs 的暴露,对发育毒性的影响最为敏感^[30]。也有人群调查发现,乳母脐带血和孕期血清中 PFSO和 PFOA的水平与婴儿出生体重、生长、头围等指标有关^[31]。

2 小结

总体来看,我国母乳 OCPs 浓度与世界发达国家相比水平较高,但在时间上呈下降趋势。暴露主要源于 OCPs 的大量使用。膳食摄入尤其是动物性食物的摄入是 OCPs 主要暴露途径。母乳中 OCPs 的水平还与母亲的年龄有关。母乳中 PCDD/Fs 和 PCBs 与其他发展中国家相比水平较高,但比美国等发达国家水平低,电子废物的处理是 PCDD/Fs 和 PCBs 的主要暴露来源。膳食摄入,尤其是鱼类食物的摄入是PCDD/Fs 和 PCBs 暴露的主要途径。PBDE 的暴露途径多样,膳食暴露是母乳中低分子量 BDE 暴露的主要来源。空气、粉尘吸入是高分子量 BDE 暴露的主要来源。母乳中 PFCs 暴露以出生后暴露为主,其在母乳中的水平与工业和经济发展水平有关。我国不同地区母乳 POPs 中的浓度,因工业和经济发展水平

的不同表现出较大差异,工业越发达,尤其是电子工业,其水平越高。POPs 在我国母乳中存在一定的负荷,对婴儿的生长发育存在一定的健康风险。

在今后的研究中,应建立常规的母乳 POPs 监测计划,全面了解我国母乳 POPs 的总体水平和时间变化趋势;进一步明确母乳中 POPs 的暴露来源,尤其是膳食暴露,为减少 POPs 的暴露提供依据。

参考文献

- [1] Suzuki G, Naka M, Naka S, et al. Distribution of PCDDs/PCDFs and DL-PCBs in human maternal blood, cord blood, placenta, milk, and adipose tissue; dioxin-s showing high toxic equivalency factor accumulate in the placenta [J]. Biosci Biotechnol Biochem, 2005, 69; 1836-1840.
- [2] Wong M H, Leung A O, Chan J K, et al. A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk [J]. Chemosphere, 2005, 60: 740.
- [3] ZHOU P P, WU Y N, YIN S A, et al. National survey of the levels of persistent orgachlorine pesticides in the breast milk of mothers in China[J]. Environ Pollut, 2011, 159:524-531.
- [4] 李延红,郭常义,汪国权,等.上海地区人乳中六六六、滴滴涕蓄积水平的动态研究[J].环境与职业医学,2003,20(3):181-184.
- [5] QUWY, Rominder PS, BIXH, et al. Exposure of young mothers and newborns to orgachlorine pesticides (OCPs) in Guangzhou, China[J]. Sci Total Environ, 2010, 408:3133-3138.
- [6] ZHAO G F, XU Y, LI W, et al. PCBs and OCPs in human milk and selected foods from Luqiao and Pingqiao in Zhejiang, China [J]. Environ Sci Techl, 2007, 378:281-292.
- [7] 于慧芳,赵旭冬,张晓鸣,等. 1989—2002 年北京地区人乳中有机 氯农药水平监测[J]. 中华预防医学杂志,2005,39(1):22-25.
- [8] Yukiko F, Yoshiko I, Kouji H H, et al. Comparative survey of levels of chlorinated cyclodiene pesticides in breast milk from some cities of China, Korea and Janpan[J]. Chemosphere, 2012, 89:452-457.
- [9] HUI L L, Hedley A J, Kypke K, et al. DDT levels in human milk in Hong Kong, 2001 – 2002 [J]. Chemosphere, 2008, 73:50-55.
- [10] 吴德生. 内分泌干扰物与人类健康[J]. 环境与健康杂志, 2001,18(4):201-203.
- [11] LI J G, ZHANG L, WU Y, et al. A national survey of polychlorinated dioxins, furans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in human milk in China [J]. Chemosphere, 2009, 75:1236.
- [12] 徐承敏,俞苏霞,蒋世熙,等. 某固废拆解基地母乳中多氯联苯含量及其婴儿的暴露风险[J]. 卫生研究,2006,35(5);604-607.
- [13] Leung A O, Janet K Y, XING G H, et al. Body loadings and health risk assessment of polychlorinated dibenzo-p-dioxins and diben-zofurans at an intensive electronic waste recycling site in China[J]. Environ Sci Techl, 2007, 41:7668-7674.
- [14] SUN S J, ZHAO J D, LENG J H, et al. Levels of dioxins and polybrominated diphenyl ethers in human milk from three regions of northern China and potential dietary risk factors [J]. Chemosphere, 2010, 80:1151-1159.
- [15] DENG B, ZHANG J Q, ZHANG L S, et al. Levels and profiles of

- PCDD/Fs, PCBs in mothers'milk in Shenzhen of China; estimation of breast-fed infants' intakes[J]. Environ Int, 2012, 42;47-52.
- [16] SHEN H T, DING G Q, WU Y N, et al. Polychlorinated dibenzop-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in breast milk from Zhejiang, China [J]. Environ Int, 2012, 42: 84-90.
- [17] LENG J L, Kayama F, WANG P Y, et al. Levels of persistent organic pollutants in human milk in two Chinese coastal cities, Tianjin and Yantai: Influence of fish consumption [J]. Chemophere, 2009, 75:634-639.
- [18] XIAO K, ZHAO X R, LIU Z T, et al. Polychlorinated dibenzo-pdioxins and dibenzofurans in blood and breast milk samples from residents of a schistosomiasis area with Na-PCP application in China [J]. Chemosphere, 2010, 79:740-744.
- [19] Nickerson K. Environmental contaminants in breast milk [J]. J Midwifery Womens Health, 2006, 51 (1): 26-34.
- [20] ZHANG L, LI J G, ZHAO Y F, et al. A national survey of polybrominated diphenyl ethers (PBDEs) and indicator polychlorinated biphenyls (PCBs) in Chinese mothershlorinat [J]. Chemosphere, 2011,84:625-633.
- [21] Sudaryanto A, Kajiwara N, Tsydeva Q V, et al. Levels and congener specific profiles of PBDEs in human breast milk from China: implication on exposuresources and pathways [J]. Chemosphere, 2008, 73:1661-1668.
- [22] 崔昌,田英,张琳,等.上海市某医院产妇乳汁中多溴联苯醚 暴露水平[J].中华预防医学杂志,2011,45(6):494-497.
- [23] ZHANG J G, SUN X W, AI H. Levels and congener profiles of polybrominated diphenyl ethers (PBDEs) in primipara breast milk from Shenzhen and exposure risk for breast-fed infants[J]. J Environ Monit, 2012, 14:893-900.
- [24] 赵云峰,张锐,张磊,等. 2007 年北京地区母乳中多溴联苯醚 污染水平的分析[J]. 卫生研究,2011,39(30);326-330.
- [25] JIN J, WANG Y, YANG C Q, et al. Polybrominated diphenyl ethers in the serum and breast milk of the resident population from production area, China[J]. Environ Int, 2009, 35:1048-1052.
- [26] MAST, YUZQ, ZHANGXL, et al. Levels and conge-ner profiles of polybrominated diphenyl ethers (PBDEs) in breast milk from Shanghai: Implication for exposure route of higher brominated BDEs[J]. Environ Int, 2012, 42:72-77.
- [27] 魏爰雪,王学彤,徐晓白.环境中多溴联苯醚类(PBDEs)化合物污染研究[J].化学进展,2006,18(9):1227-1233.
- [28] LIU J Y, LI J G, ZHAO Y F, et al. The occurrence of perfluorinated alkyl compounds in human milk from different regions of China[J]. Environ Int, 2010, 36;433-438.
- [29] LIU J Y, LI J G, LIU Y, et al. Comparison on gestation and lactation exposure of perfluorinated compounds for newborns [J]. Environ Int, 2011, 37:1206-1212.
- [30] Rodriguez C E, Setzer R W, Barton H A. Pharmacokinetic modeling of per fluorooctanoic acid during gestation and lactation in the mouse[J]. Reprod Toxicol, 2009, 27:373-386.
- [31] Washino N, Saijo Y, Sasaki S, et al. Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth [J]. Environ Health Perspect, 2009, 117:660-667.